Advertisement

Hydrogeology Journal

, Volume 24, Issue 7, pp 1905–1918 | Cite as

The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach

  • Simon D. Carrière
  • Konstantinos Chalikakis
  • Charles Danquigny
  • Hendrik Davi
  • Naomi Mazzilli
  • Chloé Ollivier
  • Christophe Emblanch
Report

Abstract

Some portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB – Laboratoire Souterrain à Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable management.

Keywords

Karst France Hydrogeophysics Carbonate rocks Matrix porosity 

Le rôle de la matrice poreuse dans la régulation des flux d'eau dans la zone non saturée du karst: une approche hydrogéophysique intégrée

Résumé

Certaines parties de la matrice rocheuse poreuse de la zone non saturée karstique (ZNS) peut renfermer de grands volumes d’eau et jouer un rôle important dans la régulation du flux hydrique. Les résultats essentiels sont issus d’une étude menée à l’échelle locale en 2011 et 2012 au-dessus du Laboratoire Souterrain à Bas Bruit (LSBB) à Rustrel, Sud Est de la France. Des recherches antérieures ont révélé la structure géologique et les caractéristiques liées à l’eau du site d’étude et illustré la faisabilité de mesures hydrogéophysiques spécifiques. Dans cette étude, l’accent est mis sur l’hydrodynamique aux échelles temporelles saisonnières et événementielles. Un sondage par résonnance magnétique (MRS) a mesuré une teneur en eau élevée (plus de 10 %) dans un grand volume de roche. Ce grand volume d’eau ne peut pas être stocké dans les fractures et les conduits au sein de la ZNS. La MRS a également été utilisée pour mesurer la variation saisonnière de l’eau stockée dans la ZNS du karst. Un modèle basé sur les processus a été développé pour simuler l’effet de la végétation sur les dynamiques de recharge des eaux souterraines. De plus, une surveillance par tomographie de résistivité électrique (ERT) a été utilisée pour évaluer les cheminements préférentiels de l’eau au cours d’un événement de pluie. Cette étude démontre l’influence principale de l’écoulement de l’eau au sein d’une matrice rocheuse poreuse sur le fonctionnement hydrogéologique de la ZNS aussi bien à l’échelle locale (LSBB) qu’à l’échelle régionale (Fontaine de Vaucluse). En prenant en compte le rôle de la matrice poreuse dans la régulation du flux hydrique, ces résultats peuvent améliorer de manière significative la modélisation hydrodynamique des écoulements souterrains en milieu karstique, l’exploitation, et la gestion durable.

El papel de la matriz porosa en la regulación del flujo de agua dentro de la zona no saturada en un karst: un enfoque hidrogeofísico integrado

Resumen

Algunas partes de la matriz porosa de una roca kárstica en la zona no saturada (UZ) pueden contener grandes cantidades de agua y jugar un papel importante en la regulación del flujo de agua. Se presentan los principales resultados de un estudio a escala local, llevado a cabo en 2011 y 2012 por encima del Low Noise Underground Laboratory (LSBB – Laboratoire Souterrain à Bas Bruit) en Rustrel, en el sureste de Francia. Las investigaciones previas revelaron la estructura geológica y las características relacionadas con el agua en la zona de estudio e ilustraron acerca de la viabilidad de mediciones hidrogeofísicas específicas. En este estudio, la atención se centra en la hidrodinámica a escalas de tiempo estacionales y de eventos. Los sondeos de resonancia magnética (MRS) midieron un alto contenido de agua (más de un 10 %) en un volumen importante de la roca. Este volumen importante de agua no se puede almacenar en las fracturas y conductos dentro de la UZ. Los MRS también se utilizaron para medir la variación estacional de agua almacenada en la UZ del karst. Se desarrolló un modelo basado en los procesos para simular el efecto de la vegetación sobre la dinámica de la recarga del agua subterránea. Además, se utilizó el monitoreo de tomografías de resistividad eléctrica (ERT) para evaluar las vías preferenciales del agua durante un evento de lluvia. Este estudio demuestra la influencia principal del flujo de agua dentro de la matriz de la roca porosa sobre el funcionamiento hidrológico de la UZ, tanto en la escala local (LSBB) como en la regional (Fontaine de Vaucluse). Al tomar en cuenta el papel de la matriz porosa en la regulación del flujo de agua, estos resultados pueden mejorar significativamente el modelado, la hidrodinámica, la explotación y gestión sostenible del agua subterránea en el karst.

岩溶非饱和带内多孔基体在水流调解中的作用:一种综合的水文地球物理方法

摘要

岩溶非饱和带中,部分多孔岩石基体可包含大量的水兵在水流调解中发挥主要作用。这里展示了2011年和2012年在法国东南部吕斯特勒低噪音地下实验室之上进行的局部尺度研究的基本结果。过去的研究揭示了研究区的地质构造和与水相关的特征,描述了特定水文地球物理测量方法的可能性。在本研究中,重点集中在季节和事件时间标度上水动力学。磁共振测得大体积岩石中有很高的含水量(大于10%)。如此大量的水不能储存在非饱和带内的断裂和管道中。磁共振还用于测量储存在岩溶非饱和带内的水的季节性变化。建立了基于过程的模型,来模拟植被对地下水补给动力学的影响。另外,利用电阻率层析成像监测评价了降雨事件期间的优先水通道。本研究展示了局部尺度(低噪音地下实验室)和局域尺度(Fontaine de Vaucluse)多孔岩石基体内水流对非饱和带水文地质机能的主要影响。考虑到多孔基体在水流调解中的作用,这些发现可大大改进岩溶地下水的水动力学模拟、开发和可持续管理。

O papel da matriz porosa na regulação do fluxo de água dentro da uma zona não saturada cárstica: uma abordagem hidrogeofísica integrada

Resumo

Algumas porções da matriz porosa da rocha em zona não saturada (ZNS) cárstica podem conter grandes volumes de água e desempenhar um importante papel na regulação do fluxo de água. São apresentados os resultados essenciais de um estudo de escala-local realizado em 2011 e 2012 acima do Laboratório Subterrâneo de Baixo Ruído (LSBB – Laboratoire Souterrain à Bas Bruit) em Rustrel, sudeste da França. Pesquisas anteriores revelaram a estrutura geológica e as características relacionadas da água no local de estudo e ilustraram a possibilidade de medições hidrogeofísicas específicas. Neste estudo, o foco está nas hidrodinâmicas nas escalas de tempos sazonal e de evento. Sondagem de ressonância magnética (SRM) mediu um teor alto de água (mais de 10 %) em um grande volume de rocha. Esse grande volume de água não pode ser armazenado em fraturas e condutos dentro da ZNS. A SRM foi também usada para medir a variação sazonal da água armazenada na ZNS cárstica. Um modelo de processo-básico foi desenvolvido para simular o efeito da vegetação nas dinâmicas da recarga da água subterrânea. Além disso, o monitoramento de tomografia de resistividade elétrica (TRE) foi utilizado para avaliar caminhos preferenciais de água durante um evento de chuva. Esse estudo demonstra a maior influência do fluxo de água dentro da matriz porosa da rocha sobre o funcionamento hidrogeológico da ZNS tanto nas escalas local (LSBB) quanto na regional (Fontaine de Vaucluse). Tendo em conta o papel da matriz porosa na regulação do fluxo da água, estes resultados podem melhorar significantemente a modelagem da hidrodinâmica cárstica da água subterrânea, a explotação e o gerenciamento sustentável.

Notes

Acknowledgements

The authors would like to express their gratitude to CIRAME, to ORE H+ and to all the LSBB team for their technical and logistic help. This study was funded by a French ministry of education and research PhD grant. This work was performed within the framework of the FDV/LSBB observation site, part of the KARST observatory network (www.sokarst.org) initiative of INSU/CNRS, which seeks to support knowledge sharing and promote cross-disciplinary research on karst systems. We also thank the editorial board of Hydrogeology Journal, S. White, M. Saribudak and an anonymous reviewer for helping us improve this report.

References

  1. Aquilina L, Ladouche B, Dörfliger N (2006) Water storage and transfer in the epikarst of karstic systems during high flow periods. J Hydrol 327(3–4):472–485CrossRefGoogle Scholar
  2. Bailly-Comte V, Martin JB, Jourde H, Screaton EJ, Pistre S, Langston A (2010) Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. J Hydrol 386(1–4):55–66. doi: 10.1016/j.jhydrol.2010.03.005 CrossRefGoogle Scholar
  3. Bakalowicz M (1995) La zone d’infiltration des aquifères karstiques: méthodes d’étude, structure et fonctionnement [Infiltration zones in karst aquifers: methods of study, structure and functioning]. Hydrogéologie 4:3–21Google Scholar
  4. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160CrossRefGoogle Scholar
  5. Bakalowicz M, Dörfliger N (2005) Ressources en eau du karst: un enjeu pour le bassin méditerranéen [Karst water resources: an issue for the Mediterranean basin]. Géosciences - l’eau souterraines BRGM 2, BRGM, Orléan, France, pp 26–31Google Scholar
  6. Barbel-Perineau A (2013) Caractérisation du fonctionnement de la zone non saturée des aquifères karstiques: approche directe par études hydrodynamiques et hydrochimiques sur le bassin de recherche, d’expérimentation et d’observation de fontaine de Vaucluse - Laboratoire Souterrain à Bas Bruit de Rustrel - Pays d’Apt [Characterization of behavior of the unsaturated zone of karst aquifers: direct approach through hydrodynamic and hydrochemical studies on the research, experimental and observational basin of the Fontaine de Vaucluse-Underground Low Noise Laboratory of Rustrel - Pays d’Apt]. PhD Thesis, Univ. d’Avignon et des Pays de Vaucluse, France, 226 ppGoogle Scholar
  7. Batiot C, Emblanch C, Blavoux B (2003) Total organic carbon (TOC) and magnesium (Mg2+): two complementary tracers of residence time in karstic systems. C R Geosci 335(2):205–214CrossRefGoogle Scholar
  8. Bereš J (2013) Caractérisation de l’anisotropie d’une plate-forme carbonatée karstifiée: approche méthodologique conjointe sismique et électrique [Characterization of anisotropy of a karstified carbonate platform: joint seismic and electric methodological approach]. PhD Thesis, Univ. Paris Sud, Orsay, France, 190 ppGoogle Scholar
  9. Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8–12):861–884CrossRefGoogle Scholar
  10. Blanc MM, Masse JP, De Peyronnet P, Roux M, Weydert P, Rouire J (1973) Carte géologique et notice explicative (1/50 000), feuille 942 [Geologic map and explanatory notes (1/50,000) Sheet 942], Sault-de-Vaucluse, France. BRGM, Orléan, FranceGoogle Scholar
  11. Blondel T (2008) Traçage spatial et temporel des eaux souterraines dans les hydrosystèmes karstiques par les matières organiques dissoutes: expérimentation et application sur les sites du Laboratoire Souterrain à Bas Bruit (LSBB) de Rustrel - Pays d’Apt et de Fontaine de Vaucluse [Spatial and temporal tracing of groundwater in karst hydrosystems using dissolved organic matter: experiments in and application to sites within the Underground Low Noise Laboratory (LSBB) of Rustrel - Pays dApt and the Fountaine de Vaucluse]. PhD Thesis, Univ. d’Avignon et des Pays de Vaucluse, France, 192 ppGoogle Scholar
  12. Cardarelli E, Di Filippo G, Tuccinardi E (2006) Electrical resistivity tomography to detect buried cavities in Rome: a case study. Near Surface Geophys 4(6):387–392Google Scholar
  13. Carrière SD (2014) Etude hydrogéophysique de la structure et du fonctionnement de la zone non saturée du karst [Hydrogeophysical study of the structure and functioning of the karst unsaturated zone]. PhD Thesis, Univ. d’Avignon et des Pays de Vaucluse, France, 217 ppGoogle Scholar
  14. Carrière SD, Chalikakis K, Sénéchal G, Danquigny C, Emblanch C (2013) Combining electrical resistivity tomography and ground penetrating radar to study geological structuring of karst unsaturated zone. J Appl Geophys 94(0):31–41. doi: 10.1016/j.jappgeo.2013.03.014 CrossRefGoogle Scholar
  15. Carrière SD, Chalikakis K, Danquigny C, Clément R, Emblanch C (2015) Feasibility and limits of electrical resistivity tomography to monitor water infiltration through karst medium during a rainy event. In: Andreo B, Carrasco F, Durán JJ, Jiménez P, LaMoreaux JW (eds) Hydrogeological and environmental investigations in karst systems. Springer, Heidelberg, pp 45–55Google Scholar
  16. Celle-Jeanton H, Emblanch C, Mudry J, Charmoille A (2003) Contribution of time tracers (Mg2+, TOC, delta C-13(TDIC), NO3-) to understand the role of the unsaturated zone: a case study—karst aquifers in the Doubs Valley, eastern France. Geophys Res Lett 30(6):1322CrossRefGoogle Scholar
  17. Chalikakis K, Plagnes V, Guerin R, Valois R, Bosch FP (2011) Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeol J 19(6):1169–1180CrossRefGoogle Scholar
  18. Chalikakis K, Carrière SD, Mazzilli N, Danquigny C, Legchenko A, Emblanch C (2014) Water in karst hydrosystems unsaturated zone: MRS evidences within an integrated hydrogeophysical approach. Near Surface Geosciences 2014, 20th European Meeting of Environmental and Engineering Geophysics, Athens Greece, 14–18 September, Extended abstract TuPA110Google Scholar
  19. Cognard-Plancq AL, Gevaudan C, Emblanch C (2006) Historical monthly rainfall-runoff database on Fontaine de Vaucluse karst system: review and lessons. In: Duràn JJ, Andreo B, Carrasco F (eds) Karst, cambio climatico y aguas submediterraneas [Karst, climate change and submediterranean waters]. Publicaciones del Instituto Geológico y Minero de España, Madrid, pp 465–475Google Scholar
  20. Dahlin T (2001) The development of DC resistivity imaging techniques. Comput Geosci 27(9):1019–1029CrossRefGoogle Scholar
  21. Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52(5):379–398CrossRefGoogle Scholar
  22. Davi H, Dufrêne E, Granier A, Le Dantec V, Barbaroux C, François C, Bréda N (2005) Modeling carbon and water cycles in a beech forest, part II: validation of the main processes from organ to stand scale. Ecol Model 185(2–4):387–405. doi: 10.1016/j.ecolmodel.2005.01.003 CrossRefGoogle Scholar
  23. Davi H, Dufrêne E, Francois C, Le Maire G, Loustau D, Bosc A, Rambal S, Granier A, Moors E (2006) Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems. Agric For Meteorol 141(1):35–56CrossRefGoogle Scholar
  24. Davi H, Baret F, Huc R, Dufrêne E (2008) Effect of thinning on LAI variance in heterogeneous forests. For Ecol Manag 256(5):890–899CrossRefGoogle Scholar
  25. Deville S (2013) Caractérisation de la zone non saturée des karsts par la gravimétrie et l’hydrogéologie [Gravimetric and hydrogeologic characterization of the karst unsaturated zone]. PhD Thesis, Univ. de Montpellier II, Montpellier, France, 241 ppGoogle Scholar
  26. Dufrêne E, Davi H, François C, Maire GI, Dantec VL, Granier A (2005) Modelling carbon and water cycles in a beech forest, part I: model description and uncertainty analysis on modelled NEE. Ecol Model 185(2–4):407–436. doi: 10.1016/j.ecolmodel.2005.01.004 CrossRefGoogle Scholar
  27. Emblanch C, Zuppi GM, Mudry J, Blavoux B, Batiot C (2003) Carbon 13 of TDIC to quantify the role of the unsaturated zone: the example of the Vaucluse karst systems (southeastern France). J Hydrol 279(1–4):262–274. doi: 10.1016/s0022-1694(03)00180-x CrossRefGoogle Scholar
  28. Fleury P, Plagnes V, Bakalowicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse (South of France). J Hydrol 345(1–2):38–49. doi: 10.1016/j.jhydrol.2007.07.014 CrossRefGoogle Scholar
  29. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK, 562 ppGoogle Scholar
  30. Garry B (2007) Etude des processus d’écoulements de la zone non saturée pour la modelisation des acquifères karstiques: expérimentation hydrodynamique et hydrochimique sur les sites du Laboratoire Souterrain à Bas Bruit (LSBB) de Rustrel et de Fontaine de Vaucluse [Study of flow processes in the unsaturated zone for modeling karst aquifers: hydrodynamic and hydrochemical experiments on the Underground Low-Noise Laboratory (LLBB) in Rustrel and the Fontaine de Vaucluse]. PhD Thesis, Univ. d’Avignon et des Pays de Vaucluse, France, 234 ppGoogle Scholar
  31. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor and Francis, London, 264 pGoogle Scholar
  32. Gondwe BRN, Lerer S, Stisen S, Marin L, Rebolledo-Vieyra M, Merediz-Alonso G, Bauer-Gottwein P (2010) Hydrogeology of the south-eastern Yucatan Peninsula: new insights from water level measurements, geochemistry, geophysics and remote sensing. J Hydrol 389(1–2):1–17. doi: 10.1016/j.jhydrol.2010.04.044 CrossRefGoogle Scholar
  33. Guglielmi Y (2010) Carbonate reservoirs - The Rustrel-Fontaine de Vaucluse LSBB: a unique facility for deep carbonate reservoir. Proceedings of i-Dust 2010, Apt, France, May 2014. http://www.lsbb.eu/index.php/en/ct-menu-item-178/ct-menu-item-178. Accessed May 2016
  34. Gunn J (2004) Encyclopedia of caves and karst science. Fitzroy, Dearborn, 1940 pGoogle Scholar
  35. Halley RB, Schmoker JW (1983) High-porosity Cenozoic carbonate rocks of south Florida: progressive loss of porosity with depth. AAPG Bull 67(2):191–200Google Scholar
  36. Hartmann A, Lange J, Vivó Aguado À, Mizyed N, Smiatek G, Kunstmann H (2012) A multi-model approach for improved simulations of future water availability at a large Eastern Mediterranean karst spring. J Hydrol 468–469:130–138CrossRefGoogle Scholar
  37. Jacob T, Bayer R, Chery J, Jourde H, Le Moigne N, Boy JP, Hinderer J, Luck B, Brunet B (2008) Absolute gravity monitoring of water storage variation in a karst aquifer on the Larzac plateau (southern France). J Hydrol 359(1–2):105–117. doi: 10.1016/j.jhydrol.2008.06.020 CrossRefGoogle Scholar
  38. Jacob T, Chery J, Bayer R, Le Moigne N, Boy JP, Vernant P, Boudin F (2009) Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity. Geophys J Int 177(2):347–360. doi: 10.1111/j.1365-246X.2009.04118.x CrossRefGoogle Scholar
  39. Jacob T, Bayer R, Chery J, Le Moigne N (2010) Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. J Geophys Res 115(B6):B06402. doi: 10.1029/2009jb006616 CrossRefGoogle Scholar
  40. Kaufmann O, Deceuster J (2014) Detection and mapping of ghost-rock features in the Tournaisis area through geophysical methods: an overview. Geol Belg 17(1):17–26Google Scholar
  41. Kiraly L (1998) Modelling karst aquifers by the combined discrete channel and continuum approach. Bull Hydrogéol 16:77–98Google Scholar
  42. Labat D, Ababou R, Mangin A (2000a) Rainfall-runoff relations for karstic springs, part I: convolution and spectral analyses. J Hydrol 238(3–4):123–148. doi: 10.1016/s0022-1694(00)00321-8 CrossRefGoogle Scholar
  43. Labat D, Ababou R, Mangin A (2000b) Rainfall-runoff relations for karstic springs, part II: continuous wavelet and discrete orthogonal multiresolution. J Hydrol 238(3–4):149–178. doi: 10.1016/s0022-1694(00)00322-x CrossRefGoogle Scholar
  44. Larocque M, Banton O, Ackerer P, Razack M (1999) Determining karst transmissivities with inverse modeling and an equivalent porous media. Ground Water 37(6):897–903. doi: 10.1111/j.1745-6584.1999.tb01189.x CrossRefGoogle Scholar
  45. Leenhardt F (1883) Etude géologique de la région du Mont Ventoux [Geologic study of the Mont Ventoux region]. Masson, Paris, 273 ppGoogle Scholar
  46. Legchenko A, Baltassat JM, Beauce A, Bernard J (2002) Nuclear magnetic resonance as a geophysical tool for hydrogeologists. J Appl Geophys 50:21–46CrossRefGoogle Scholar
  47. Léonide P, Fournier F, Reijmer JJG, Vonhof H, Borgomano J, Dijk J, Rosenthal M, Van Goethem M, Cochard J, Meulenaars K (2014) Diagenetic patterns and pore space distribution along a platform to outer-shelf transect (Urgonian limestone, Barremian–Aptian, SE France). Sediment Geol 306:1–23CrossRefGoogle Scholar
  48. Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques [Contribution to the hydrodynamic study of karst aquifers]. PhD Thesis, Univ. de Dijon, Dijon, France, 298 ppGoogle Scholar
  49. Marsaud B (1996) Structure et fonctionnement de la zone noyée des karsts à partir des résultats expérimentaux. [Structure and functioning of the karst saturated zone based on experimental results]. PhD Thesis, Univ. Paris XI, Orsay, France, 305 ppGoogle Scholar
  50. Martin N (2012) Ajustements fonctionnels du chêne vert (Quercus ilex L.) à la sécheresse à différentes échelles temporelles: incidences sur la modélisation des processus [Functional adjustments of the evergreen oak (Quercus ilex L.) to drought at different time scales: effects on the modelling of the processes]. PhD Thesis, Univ. de Montpellier II, Montpellier, France, 239 ppGoogle Scholar
  51. Masse JP (1969) Contribution a l’étude de l’Urgonien (Barrémien - Bédoulien) des Monts de vaucluse et du Luberon. [Contribution to the study of the Urgonian (Barremian-Bedoulian) of the Vaucluse and the Luberon mountains]. Bureau de Recherches Géologiques et Minières, Orléan, France, 59 ppGoogle Scholar
  52. Masse JP (1976) Les calcaires urgoniens de Provence, Valanginien - Aptien inférieur, tome 1: stratigraphie - paléontologie; tome 2: Les paléoenvironnements et leur évolution [Urgonian Limestones of Provence, Valanginian – Lower Aptian, vol 1: statigraphy – paleontology, vol 2: paleoenvironments and their evolution]. PhD Thesis, Univ. d’Aix-Marseille, Marseille, France, 445 ppGoogle Scholar
  53. Masse JP, Fenerci-Masse M (2011) Drowning discontinuities and stratigraphic correlation in platform carbonates: the Late Barremian–Early Aptian record of southeast France. Cretac Res 32(6):659–684Google Scholar
  54. Maufroy E (2010) Caractérisation et modélisation numérique de l’effet de site topographique 3D: application à la Grande Montagne de Rustrel, Vaucluse [Characterization and numerical modeling of 3D topographic site effects: application to the Grande Montagne of Rustrel, Vaucluse]. PhD Thesis, Univ. de Nice Sophia-Antipolis, Nice, France, 236 ppGoogle Scholar
  55. Mazzilli N, Carrière SD, Chalikakis K, Legchenko A, Jourde H (2012) MRS applicability for the characterisation of the unsaturated zone of karst hydrosystems: first results from the LSBB site (Rustrel, France). Proceedings of i-Dust 2012, Apt, France. http://www.lsbb.eu/index.php/en/ct-menu-item-178/ct-menu-item-178. Accessed May 2016
  56. Mazzilli N, Jourde H, Jacob T, Guinot V, Le Moigne N, Boucher M, Chalikakis K, Guyard H, Legchenko A (2013) On the inclusion of ground-based gravity measurements to the calibration process of a global rainfall-discharge reservoir model: case of the Durzon karst system (Larzac, southern France). Environ Earth Sci 68:1631–1646. doi: 10.1007/s12665-012-1856-z CrossRefGoogle Scholar
  57. Moussu F, Oudin L, Plagnes V, Mangin A, Bendjoudi H (2011) A multi-objective calibration framework for rainfall–discharge models applied to karst systems. J Hydrol 400(3–4):364–376. doi: 10.1016/j.jhydrol.2011.01.047 CrossRefGoogle Scholar
  58. Mudarra M, Andreo B (2010) Hydrogeological functioning of a karst aquifer deduced from hydrochemical components and natural organic tracers present in spring waters: the case of Yedra spring (southern Spain). Acta Carsol 39(2):261–270CrossRefGoogle Scholar
  59. Mudarra M, Andreo B, Mudry J (2012) Monitoring groundwater in the discharge area of a complex karst aquifer to assess the role of the saturated and unsaturated zones. Environ Earth Sci 65(8):2321–2336. doi: 10.1007/s12665-011-1032-x CrossRefGoogle Scholar
  60. Ollivier C, Carrière SD, Chalikakis K, Danquigny C, Massonnat G (2013) Improving a 3D geological model using multiple geophysical methods. 33rd GOCAD-MEETING, Nancy, France, 17–20 September 2013Google Scholar
  61. Perineau A, Danquigny C, Emblanch C, Pozzo di Borgo E, Boyer D, Poupeney J (2011) Hydrodynamic organisation of the flows in the unsatured zone of the Fontaine de Vaucluse karst system: first results. Proceedings of i-Dust 2010. doi: 10.1051/idust/201101001
  62. Puig JM (1987) Le système karstique de la Fontaine de Vaucluse [The karst system of the Fontaine de Vaucluse]. PhD Thesis, Univ. d’Avignon et des Pays de Vaucluse, France, 207 ppGoogle Scholar
  63. Rimmer A, Salingar Y (2006) Modelling precipitation-streamflow processes in karst basin: the case of the Jordan River sources. Israel J Hydrol 331(3–4):524–542CrossRefGoogle Scholar
  64. Robert T, Caterina D, Deceuster J, Kaufmann O, Nguyen F (2012) A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones. Geophysics 77(2):B55–B67. doi: 10.1190/geo2011-0313.1 CrossRefGoogle Scholar
  65. Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276(1–4):137–158. doi: 10.1016/s0022-1694(03)00064-7 CrossRefGoogle Scholar
  66. Vouillamoz JM, Legchenko A, Albouy Y, Bakalowicz M, Baltassat JM, Al-Fares W (2003) Localization of saturated karst aquifer with magnetic resonance sounding and resistivity imagery. Ground Water 41(5):578–586. doi: 10.1111/j.1745-6584.2003.tb02396.x CrossRefGoogle Scholar
  67. White WB (2007) A brief history of karst hydrogeology: contributions of the NSS. J Cave Karst Stud (69):13–26Google Scholar
  68. Worthington SRH (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17(7):1665–1678. doi: 10.1007/s10040-009-0489-0 CrossRefGoogle Scholar
  69. Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47(3):326–336. doi: 10.1111/j.1745-6584.2009.00551.x CrossRefGoogle Scholar
  70. Zhu JF, Currens JC, Dinger JS (2011) Challenges of using electrical resistivity method to locate karst conduits: a field case in the Inner Bluegrass Region, Kentucky. J Appl Geophys 75(3):523–530. doi: 10.1016/j.jappgeo.2011.08.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Simon D. Carrière
    • 1
  • Konstantinos Chalikakis
    • 2
  • Charles Danquigny
    • 1
  • Hendrik Davi
    • 3
  • Naomi Mazzilli
    • 2
  • Chloé Ollivier
    • 2
  • Christophe Emblanch
    • 2
  1. 1.UMR 1114 EMMAH, INRA, Domaine Saint PaulAvignonFrance
  2. 2.UMR 1114 EMMAH, UAPVAvignonFrance
  3. 3.UR629, URFM, INRA, Domaine Saint PaulAvignonFrance

Personalised recommendations