Advertisement

Hydrogeology Journal

, Volume 24, Issue 6, pp 1333–1341 | Cite as

Hydrologic testing during drilling: application of the flowing fluid electrical conductivity (FFEC) logging method to drilling of a deep borehole

  • Chin-Fu TsangEmail author
  • Jan-Erik Rosberg
  • Prabhakar Sharma
  • Theo Berthet
  • Christopher Juhlin
  • Auli Niemi
Paper

Abstract

Drilling of a deep borehole does not normally allow for hydrologic testing during the drilling period. It is only done when drilling experiences a large loss (or high return) of drilling fluid due to penetration of a large-transmissivity zone. The paper proposes the possibility of conducting flowing fluid electrical conductivity (FFEC) logging during the drilling period, with negligible impact on the drilling schedule, yet providing important information on depth locations of both high- and low-transmissivity zones and their hydraulic properties. The information can be used to guide downhole fluid sampling and post-drilling detailed testing of the borehole. The method has been applied to the drilling of a 2,500-m borehole at Åre, central Sweden, firstly when the drilling reached 1,600 m, and then when the drilling reached the target depth of 2,500 m. Results unveil eight hydraulically active zones from 300 m down to borehole bottom, with depths determined to within the order of a meter. Further, the first set of data allows the estimation of hydraulic transmissivity values of the six hydraulically conductive zones found from 300 to 1,600 m, which are very low and range over one order of magnitude.

Keywords

Hydraulic testing Fractured rocks Heterogeneity Well logging Drilling 

Test hydrologique en cours de forage: application de la méthode de logging de la conductivité électrique du fluide s’écoulant pour le forage d’un puits profond

Résumé

Le forage d’un puits profond ne permet pas normalement la réalisation de tests hydrologiques au cours de la période de forage. Ils sont réalisés uniquement lorsque le forage expérience une grande perte (ou rendement élevé) de fluide de forage en raison de la pénétration d’une zone de grande transmissivité. L’article propose la possibilité d’effectuer un logging de conductivité électrique du fluide qui s’écoule au cours de la période de forage, avec un impact négligeable sur le calendrier de réalisation de forage, tout en fournissant d’importantes informations sur la profondeur des emplacements aussi bien des zones à transmissivité élevée que faible et de leurs propriétés hydrauliques. Les informations peuvent être utilisées pour guide l’échantillonnage du fluide de forage et la réalisation de tests détaillés post-forage du puits. La méthode a été appliquée sur le forage d’un puits de 2,500 m à Åre, partie centrale de la Suède, lorsque le forage a atteint 1,600 m, puis lorsque le forage a atteint la profondeur cible de 2,500 m. Les résultats dévoilent huit zones actives hydrauliquement à partir de 300 m jusqu’au fond de trou, avec des profondeurs déterminées de l’ordre du mètre. En outre, le premier jeu de données permet l’estimation des valeurs de transmissivité hydraulique pour six zones conductrices hydrauliquement situées entre 300 et 1,600 m de profondeur, qui sont très faibles et s’étendent sur un ordre de grandeur.

Ensayos hidrológicos durante la perforación: aplicación del método de registros de la conductividad eléctrica (FFEC) del fluido circulante en una perforación profunda

Resumen

La perforación de un pozo profundo normalmente no permite ensayos hidrológicos durante el período de perforación. Cuando se perfora sólo se realizan experiencias de una grandes pérdidas (o de altos retornos) de fluido de perforación debido a la penetración en una zona de gran transmisividad. En el trabajo se propone la posibilidad de realizar registros de conductividad eléctrica (FFEC) del fluido circulante durante el periodo de perforación, con un impacto insignificante sobre el programa de perforación, lo cual proporciona sin embargo, información importante sobre ubicación en profundidad de las zonas de alta y baja transmisividad y de sus propiedades hidráulicas. La información puede ser usada para guiar el muestreo de fluidos del pozo y pruebas detalladas post-perforación en el pozo. El método ha sido aplicado a la perforación de un pozo de 2,500 m en Are, Suecia central, en primer lugar cuando la perforación alcanzó 1,600 m, y luego, cuando la perforación alcanza la profundidad objetivo de 2,500 m. Los resultados revelan ocho zonas hidráulicamente activas desde 300 m hasta el fondo del pozo, con profundidades determinadas dentro del orden de un metro. Además, el primer conjunto de datos permite la estimación de los valores de la transmisividad hidráulica de las seis zonas hidráulicamente conductoras encontradas entre 300–1,600 m, que son muy bajas y el rango de más de un orden de magnitud.

钻探中的水文测试: 深井钻探流动液体电导率录井方法的应用

摘要

深井钻探在钻探期间通常进行不了水文测试。只是在钻探遭遇透水性很高的地带时钻探液体大量损失(或者很高的返回率)的情况下才进行水文测试。本文提出了钻探期间在对钻探计划影响最小的情况下进行流动液体电导率录井方法的可能性,还提供了高透水性和低透水性地带深度位置及其水利特性的重要信息。这些信息可以用来指导井底液体采样和钻孔钻探后详细的测试。该方法在瑞典中部Åre钻探一口2,500米深的井时得到应用,首先在钻探到1,600米时及在2,500米时采用了该方法。结果揭示了从300米深到井底有8个水力积极带,深度确定在一米范围内。此外,利用第一套资料可以估算300米深到1,600米深范围内6个水力传导带的水力导水系数值,这些值非常低,在一个数量级范围内。

Ensaio hidrológico durante perfuração: aplicação do método de perfilagem de condutividade elétrica com fluxo induzido (CEFI) na perfuração de um furo de sondagem profundo

Resumo

A perfuração de um furo de sondagem profundo normalmente não permite testes hidrológicos durante a etapa de perfuração. Isso só é feito quando a perfuração apresenta uma grande perda (ou alto retorno) do fluido de perfuração devido a penetração em uma zona de grande transmissividade. O artigo propõe a possibilidade de conduzir a perfilagem de condutividade elétrica com fluido induzido (CEFI) durante a etapa de perfuração, com impacto desprezível no calendário de perfuração, e ainda fornecendo informações importantes em locais profundos de ambas as zonas de alta e baixa transmissividade e suas propriedades hidráulicas. As informações podem ser utilizadas para guiar a amostragem de fluido furo abaixo e ensaio detalhado do furo de sondagem pós-perfuração. O método foi aplicado na perfuração de um furo de sondagem de 2,500-m em Åre, Suécia central, primeiramente quando a perfuração alcançou 1,600 m, e então quando a perfuração alcançou a profundidade alvo de 2,500 m. Os resultados revelaram oito zonas hidráulicas ativas a partir de 300 m até a parte inferior do furo de sondagem, com profundidades determinadas na ordem de um metro. Além disso, o primeiro conjunto de dados permite a estimativa de valores de transmissividade hidráulica das seis zonas hidraulicamente condutivas encontradas de 300 a 1,600 m, que são muito baixas e ao longo do intervalo de uma ordem de magnitude.

Notes

Acknowledgements

The authors cordially acknowledge the support of Swedish Geological Survey (SGU), grant number 1724, for the research reported in this paper. The first author would also like to acknowledge partial support for preparation of this paper by the Used Fuel Disposition Campaign, Office of Nuclear Energy of the U.S. Department of Energy, under contract number DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory. The drilling of the COSC-1 borehole was financed by the International Continental Scientific Drilling Program (ICDP) and the Swedish Research Council (VR: grant 2013–94). Special thanks to Per-Gunnar Alm and the logging crew from Lund University in conducting the field operation for the FFEC logging. We are also grateful to ICDP-OSG logging teams for collecting the logging data shown in Fig. 6.

References

  1. Doughty C, Tsang C-F (2000) BORE II: a code to compute dynamic wellbore electrical conductivity logs with multiple inflow/outflow points including the effects of horizontal flow across the well, Rep. LBL-46833, Lawrence Berkeley National Laboratory, Berkeley, CA, 2000. Available from: http://ipo.lbl.gov/lbnl12561673/. Accessed March 2016
  2. Doughty C, Tsang CF (2005) Signatures in flowing fluid electric conductivity logs. J Hydrol 310:157–180CrossRefGoogle Scholar
  3. Doughty C, Takeuchi S, Amano K, Shimo M, Tsang CF (2005) Application of multi-rate flowing fluid electric conductivity logging method to well DH-2, Tono Site, Japan. Water Resour Res 41:W10401. doi: 10.1029/2004WR003708 CrossRefGoogle Scholar
  4. Doughty C, Tsang CF, Yabuuchi S, Kunimaru T (2013) Flowing fluid electric conductivity logging for a deep artesian well in fractured rock with regional flow. J Hydrol 482:1–13CrossRefGoogle Scholar
  5. Earlougher RC (1977) Advances in well test analysis. SPE Monograph, vol 5, Society of Petroleum Engineers Richardson, TX, pp 90–103Google Scholar
  6. Follin S (2008) Bedrock hydrogeology Forsmark: site descriptive modeling. SDM-Site Forsmark, SKB report R-08-95. Available at www.skb.se/publication/1877175/. Accessed March 2016
  7. Follin S, Hartley L, Rhén I, Jackson P, Joyce S, Roberts D, Swift B (2014) A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22:313–331CrossRefGoogle Scholar
  8. Gee DG, Juhlin C, Pascal C, Robinson P (2010) Collisional orogeny in the Scandinavian Caledonides (COSC) (2010). GFF 132(1):29–44. doi: 10.1080/11035891003759188 CrossRefGoogle Scholar
  9. Hedin P, Juhlin C, Gee DG (2012) Seismic imaging of the Scandinavian Caledonides to define ICDP drilling sites. Tectono-Physi 554–557:30–41. doi: 10.1016/j.tecto.2012.05.026 CrossRefGoogle Scholar
  10. Hedin P, Malehmir A, Gee DG, Juhlin C, Dyrelius D (2014) 3D interpretation by integrating seismic and potential field data in the vicinity of the proposed COSC-1 drill site, central Swedish Caledonides. Geol Soc Lond Spec Publ 390:301–319. doi: 10.1144/SP390.15 CrossRefGoogle Scholar
  11. Hess AE, Paillet FL (1990) Applications of the thermal-pulse flowmeter in the hydraulic characterization of fractured rocks. ASTM Spec Tech Publ 1101:99–112Google Scholar
  12. Juhlin C, Wallroth T, Smellie J, Eliasson T, Ljunggren C, Leijon B, Beswick J (1998) The Very Deep Hole concept: geoscientific appraisal of conditions at great depth. SKB report TR 98–05. Available at www.skb.se
  13. Lorenz H (2010) The Swedish deep drilling program: for science and society. GFF 132:25–27CrossRefGoogle Scholar
  14. Lorenz H, Rosberg J-E, Juhlin C, Bjelm L, Almqvist BSG, Berthet T, Conze R, Gee DG, Klonowska I, Pascal C, Pedersen K, Roberts NMW, Tsang CF (2015) COSC-1: drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia. Sci Dril 19:1–11. doi: 10.5194/sd-19-1-2015 CrossRefGoogle Scholar
  15. Maurice L, Barker JA, Atkinson TC, Williams AT, Smart PL (2010) A tracer methodology for identifying ambient flows in boreholes. Ground Water. doi: 10.1111/j.1745-6584.2010.00708.x Google Scholar
  16. Moir RS, Parker AH, Bown RT (2014) A simple inverse method for the interpretation of pumped flowing fluid electrical conductivity logs. Water Resour Res 50:6466–6478. doi: 10.1002/2013WR013871 CrossRefGoogle Scholar
  17. Molz FJ, Young SC (1993) Development and application of borehole flowmeters for environmental assessment. Log Anal 3:13–23Google Scholar
  18. Rhén I, Forsmark T, Hartley L, Jackson P, Roberts D, Swan D, Gylling B (2008) Hydrogeological conceptualisation and parameterisation: site descriptive modeling SDM-site, Laxemar. SKB report R-08-78. Available at www.skb.se/publication/1967676/ . Accessed March 2016
  19. Tsang CF, Doughty C (2003) Multirate flowing fluid electric conductivity logging method. Water Resour Res 39(12):1354–1362. doi: 10.1029/2003WR002308 CrossRefGoogle Scholar
  20. Tsang CF, Hufschmied P, Hale FV (1990) Determination of fracture inflow parameters with a borehole fluid conductivity logging method. Water Resour Res 26:561–578CrossRefGoogle Scholar
  21. West L, Odling N (2007) Characterization of a multilayer aquifer using open well dilution tests. Ground Water 45:74–84. doi: 10.1111/j.1745-6584.2006.00262.x CrossRefGoogle Scholar
  22. Young SC, Pearson HS (1995) The electromagnetic borehole flowmeter: description and application. Ground Water Mon Remediat 15(4):138–147CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chin-Fu Tsang
    • 1
    • 2
    Email author
  • Jan-Erik Rosberg
    • 3
  • Prabhakar Sharma
    • 4
  • Theo Berthet
    • 2
  • Christopher Juhlin
    • 2
  • Auli Niemi
    • 2
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Uppsala UniversityUppsalaSweden
  3. 3.Lund UniversityLundSweden
  4. 4.Nalanda UniversityNalandaIndia

Personalised recommendations