Advertisement

Hydrogeology Journal

, Volume 24, Issue 4, pp 1001–1014 | Cite as

Use of the subsurface thermal regime as a groundwater-flow tracer in the semi-arid western Nile Delta, Egypt

  • Zenhom E. SalemEmail author
  • Dina A. Bayumy
Paper

Abstract

Temperature profiles from 25 boreholes were used to understand the spatial and vertical groundwater flow systems in the Western Nile Delta region of Egypt, as a case study of a semi-arid region. The study area is located between the Nile River and Wadi El Natrun. The recharge areas, which are located in the northeastern and the northwestern parts of the study area, have low subsurface temperatures. The discharge areas, which are located in the western (Wadi El Natrun) and southern (Moghra aquifer) parts of the study area, have higher subsurface temperatures. In the deeper zones, the effects of faults and the recharge area in the northeastern direction disappear at 80 m below sea level. For that depth, one main recharge and one main discharge area are recognized. The recharge area is located to the north in the Quaternary aquifer, and the discharge area is located to the south in the Miocene aquifer. Two-dimensional groundwater-flow and heat-transport models reveal that the sealing faults are the major factor disturbing the regional subsurface thermal regime in the study area. Besides the main recharge and discharge areas, the low permeability of the faults creates local discharge areas in its up-throw side and local recharge areas in its down-throw side. The estimated average linear groundwater velocity in the recharge area is 0.9 mm/day to the eastern direction and 14 mm/day to the northwest. The average linear groundwater discharge velocities range from 0.4 to 0.9 mm/day in the southern part.

Keywords

Egypt Arid regions Groundwater recharge/water budget Groundwater flow Thermal regime 

Utilisation du régime thermal de subsurface comme traceur de l’écoulement souterrain dans l’Ouest semi-aride du Delta du Nil, Egypte

Résumé

Les profils de température de 25 forages ont été utilisés pour comprendre les systèmes d’écoulement spatial et vertical des eaux souterraines dans la région occidentale du Delta du Nil, en Egypte, en tant qu’étude de cas en région semi-aride. L’aire d’étude est située entre le Fleuve Nil et le Wadi El Natrun. Les aires de recharge, qui se localisent dans les parties nord-est et nord-ouest de l’aire d’étude ont des températures de subsurface basses. Les zones de décharge, situées dans les parties ouest (Wadi El Natrun) et sud (Aquifère Moghra) ont des températures de subsurface plus élevées. Dans les zones profondes, l’effet des failles et de la zone de recharge en direction du Nord-Est disparaissent à 80 m en-dessous du niveau de la mer. A cette profondeur, une zone principale de recharge et une zone principale de décharge ont été reconnues. La zone de recharge se situe au Nord dans l’aquifère quaternaire et la zone de décharge au Sud dans l’aquifère miocène. Les modèles bidimensionnels d’écoulement souterrain et de transfert de chaleur montrent que les failles fermées sont le facteur principal de perturbation du régime thermal régional du sous-sol dans l’aire d’étude. Outre les aires principales de recharge et de décharge, la faible perméabilité des failles crée des zones de décharge locales sur le bord exhaussé et des zones de recharge locales sur le bord affaissé. La vitesse linéaire moyenne estimée des eaux souterraines dans la zone de recharge est de 0.9 mm/jour dans la direction de l’Est et de 14 mm/jour dans la direction du Nord-Ouest. Les vitesses de décharge linéaires moyennes de l’eau souterraine se situent entre 0.4 et 0.9 mm/jour dans la partie sud.

Uso del régimen térmico del subsuelo como un trazador del flujo de agua subterránea en el oeste semiárido Delta del Nilo, Egipto

Resumen

Se utilizaron los perfiles de temperatura de 25 pozos para entender los sistemas de flujo espacial y vertical de agua subterránea en la región oeste del Delta del Nilo en Egipto, como un caso de estudio en una región semiárida. El área de estudio se encuentra entre el río Nilo y Wadi El Natrun. Las áreas de recarga, que se encuentran en la parte noreste y noroeste del área de estudio, tienen bajas temperaturas subsuperficiales. Las áreas de descarga, que están localizadas en la parte oeste (Wadi El Natrun) y sur (acuífero de Moghra) del área de estudio, tienen temperaturas subsuperficiales más altas. En las zonas más profundas, los efectos de las fallas y la zona de recarga hacia el noreste desaparecen a 80 m por debajo del nivel del mar. Para esa profundidad, se reconocen un área principal de recarga y un área principal de descarga. La zona de recarga se encuentra hacia el norte del acuífero Cuaternario, y la zona de descarga se localiza hacia el sur en el acuífero del Mioceno. Los modelos bidimensionales de flujo de agua subterránea y de transporte de calor revelan que las fallas sellantes son el principal factor que perturba el régimen térmico regional en el subsuelo en el área de estudio. Además de las zonas principales de recarga y descarga, la baja permeabilidad de las fallas origina áreas de descarga local en el labio superior y áreas de recarga local en su labio inferior. La velocidad lineal promedio estimada del agua subterránea en la zona de recarga es de 0.9 mm/día hacia el este y de 14 mm/día hacia el noroeste. Las velocidades lineales medias de descarga del agua subterránea oscilan van de 0.4 a 0.9 mm/día en la parte sur.

埃及尼罗河三角洲西部半干旱地区利用地表以下热储作为地下水流示踪剂

摘要

利用25个钻孔的温度剖面了解埃及尼罗河三角洲西部地区空间和垂直地下水流系统,作为半干旱地区的一个研究实例。研究区位于尼罗河和El Natrun干谷之间。补给区位于研究区的东北部和西北部,地表以下温度很低。排泄区位于研究区的西部(El Natrun干谷)和南部(Moghra含水层),地下温度较高。在较深的地带,断层的影响和东北方向的补给区在海平面以下80米处消失。在这个深度上,确认有一个主要补给区和一个主要排泄区。补给区位于第四纪含水层的北面,排泄区位于中新世含水层的南面。二维地下水流和热传输模型揭示,封闭断层是干扰研究区区域地下热储的主要因素。除了主要的补给区和排泄区,断层的低透水性在其向上一边产生了局部的排泄区,而在其向下一边产生了局部的补给区。估算的补给区平均线性地下水速度向东方向为0.9 mm/天,向西北方向为14 mm/天。平均线性地下水排泄速度在南部为0.4到0.9 mm/天。

Utilização do regime térmico subsuperficial como traçador do fluxo de água subterrânea no oeste semiárido do delta do Nilo, Egito

Resumo

Perfis de temperatura de 25 poços foram utilizados para entender os sistemas fluxo espacial e vertical das águas subterrâneas na região oeste do delta do Rio Nilo do Egito, como um estudo de caso de uma região semiárida. A área de estudo está localizada entre o Rio Nilo e Wadi El Natrun. As áreas de recarga, que estão localizadas nas partes nordeste e noroeste da área de estudo, possuem baixas temperaturas em subsuperfície. As áreas de descarga, que estão localizadas nas partes oeste (Wadi El Natrun) e sudeste (Aquífero Moghra) da área de estudo, possuem maiores temperaturas em subsuperfície. Nas zonas mais profundas, os efeitos das falhas e da área de recarga na direção nordeste desparecem a 80 metros abaixo do nível do mar. Para tal profundidade, uma área de recarga principal e descarga principal foi reconhecida. A área de recarga está localizada ao norte, no Aquífero Quaternário, e a área de descarga está localizada ao sul, no Aquífero do Mioceno. Modelos de fluxo de águas subterrâneas bidimensionais e de transporte de calor revelaram que as falhas impermeáveis são o fator predominante na perturbação do regime térmico subsuperficial regional na área de estudo. Além das áreas de recarga e descarga principais, a baixa permeabilidade das falhas cria áreas de descarga locais no lado do teto e áreas de recarga locais nas áreas de muro. A velocidade linear média estimada das águas subterrâneas na área de recarga é 0.9 mm/dia na direção leste e 14 mm/dia para noroeste. As velocidades de descarga linear média das águas subterrâneas variam de 0.4 a 0.9 mm/dia na parte a sudeste.

Notes

Acknowledgements

The authors are grateful for Stephen Grasby and Martin Appold, associate editor and editor, respectively, of Hydrogeology Journal for their constructive remarks. Insightful reviews from Victor Bense and Grant Ferguson are greatly appreciated. The measured temperature data are taken from the master thesis of the second author; therefore, Abdel-Monem T. Abdel-Hameed and Taher M. Hassan are thanked for permitting the publishing of this work as they and the first author were supervising the thesis. This research was supported by funding from Tanta University, Egypt.

References

  1. Abdel Baki AA (1983) Hydrogeological and hydrogeochemical studies in the area west of Rosetta branch and south of El Nasr Canal. PhD Thesis, Ain Shams University, EgyptGoogle Scholar
  2. Aggarwal PK, Froehlich K, Gonfiantini R, Gat JR (2005) Isotope hydrology: a historical perspective from the IAEA. In: Aggarwal PK, Gat JR, Froehlich K (eds) Isotopes in the water cycle: past, present and future of a developing science. Springer, Berlin, 381 ppCrossRefGoogle Scholar
  3. Bartels J, Kühn M, Pape H, Clauser C (2000) A new aquifer simulation tool for coupled flow, heat transfer, multi-species transport and chemical water rock interactions. Proceedings of World Geothermal Congress, Kyushu - Tohuku, Japan, May 28–June 10, 2000, pp 3997–4002Google Scholar
  4. Bense V, Person M, Chaudhary K, You Y, Cremer N, Simon S (2008) Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers. Geophys Res Lett 35:L24406. doi: 10.1029/2008GL036,017
  5. Bodvarsson GS, Benson SM, Witherspoon PA (1982) Theory of the development of geothermal systems charged by vertical faults. J Geophys Res 87:9317–9328CrossRefGoogle Scholar
  6. Bredehoeft JD, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resour Res 1:325–328CrossRefGoogle Scholar
  7. Clauser C (2003) SHEMAT and processing SHEMAT: numerical simulation of reactive flow in hot aquifers. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  8. Coolbaugh MF, Sawatzky DL, Oppliger GL, Minor TB, Raines GL, Shevenell LA, Blewitt G, Louie JN (2003) Geothermal GIS coverage of the Great Basin USA: defining regional controls and favorable exploration terrains. Geotherm Resour Counc Trans 27:9–13Google Scholar
  9. Deming D (2002) Introduction to hydrogeology. McGraw-Hill, New YorkGoogle Scholar
  10. Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional groundwater flow. Geol Soc Am Bull 84:3803–3814CrossRefGoogle Scholar
  11. El Ghazawi MM, Atwa SM (1994) Contributions of some structural elements to the groundwater conditions in the southwestern portion of the Nile Delta. Geol Soc Egypt 38:649–667Google Scholar
  12. El-Abd E (2005) The geological impact on the water bearing formations in the area south west Nile Delta, Egypt. PhD Thesis, Menoufia Univ., EgyptGoogle Scholar
  13. El-Bayomy DA (2015) Sedimentological and hydrogeological studies on the area west of the Nile Delta, Egypt. MSc Thesis, Tanta Univ., EgyptGoogle Scholar
  14. El-Gamal H (2005) Environmental tracers in groundwater as tools to study hydrological questions in arid regions. University of Heidelberg, Heidelberg, GermanyGoogle Scholar
  15. Fairley JP, Hinds JJ (2004) Rapid transport pathways for geothermal fluids in an active Great Basin fault zone. Geology 32:825–828CrossRefGoogle Scholar
  16. Fairley JP, Heffner J, Hinds JJ (2003) Geostatistical evaluation of permeability in an active fault zone. Geophys Res Lett 30:1962. doi: 10.1029/2003GL018064
  17. Ge S (1998) Estimation of groundwater velocity in localized fracture zones from well temperature profiles. J Volcanol Geotherm Res 84:93–101CrossRefGoogle Scholar
  18. Gomaa MA (1995) Comparative hydrogeological and hydrogeochemical study on some aquifer west of Nile Delta, Egypt. PhD Thesis, Ain Shams University, EgyptGoogle Scholar
  19. Inagaki N, Taniguchi M (1994) Estimations of hydraulic conductivity and groundwater flow systems by using groundwater temperature in Nara Basin, Japan. J Japan Assoc Hydrol Sci 24:171–182Google Scholar
  20. Kühn M, Chiang HW (2004) Pre- and post-processing with “Processing SHEMAT”, in numerical simulation of reactive flow in hot aquifers: SHEMAT and processing SHEMAT. Springer, Heidelberg, GermanyGoogle Scholar
  21. Lachenbruch AJ, Sass JH (1977) Heat flow in the United States and the thermal regime of the crust. In: Heacock JG (ed) The earth’s crust, its nature and physical properties. American Geophysical Union, Washington, DCGoogle Scholar
  22. Lu N, Ge S (1996) Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour Res 32:1449–1453CrossRefGoogle Scholar
  23. Majumder RK, Shimada J, Taniguchi M (2013) Groundwater flow systems in the Bengal Delta, Bangladesh inferred from subsurface temperature readings. J Sci Technol 35:99–106Google Scholar
  24. Massoud U, Kenawy A, Ragab EA, Abbas MA, El-Kosery HM (2014) Characterization of the groundwater aquifers at El Sadat City by joint inversion of VES and TEM, NRIAG. J Astronom Geophys. doi: 10.1016/j.nrjag.2014.10.001 Google Scholar
  25. McKnight TL, Hess D (2000) Climate zones and types: dry climates (zone B), physical geography: a landscape appreciation. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  26. Miyakoshi A, Uchida Y, Sakura Y, Hayashi T (2003) Distribution of subsurface temperature in the Kanto Plain, Japan, estimation of regional groundwater flow system and surface warming. Phys Chem Earth 28:467–475CrossRefGoogle Scholar
  27. NOAA (2010) JetStream: online school for weather. http://www.srh.noaa.gov/jetstream/global/climate_max.htm. January 2010
  28. Said R (1962) The geology of Egypt. Elsevier, AmsterdamGoogle Scholar
  29. Sakura Y (1978) Studies on groundwater circulation using temperature data. In: Kokon S (ed) Studies on water balance in Japan, Tokyo, 344 ppGoogle Scholar
  30. Sakura Y (1993) Groundwater flow estimated from temperatures in the Yonezawa Basin, northeast Japan. In: Tracers in hydrology. IAHS, Wallingford, UK, pp 161–170Google Scholar
  31. Salem ZE (2009a) Hydraulic head, subsurface temperature and water quality as reasons for deciphering the groundwater resources and flow pattern in Wadi El-Assuity, Egypt. Sediment Egypt 17:199–216Google Scholar
  32. Salem ZE (2009b) Natural and human impacts on the groundwater under an Egyptian village, central Nile Delta: a case study of Mehallet Menouf, 13th International Water Technology Conference (IWTC, 13), March 12–15, 2009. Hurghada, Egypt, 3:1397–1414Google Scholar
  33. Salem ZE, Sakura Y, Mohamed Aslam MA (2004a) The use of temperature, stable isotopes and water quality to determine the pattern and spatial extent of groundwater flow: Nagaoka area, Japan. Hydrogeol J 12:563–575CrossRefGoogle Scholar
  34. Salem ZE, Taniguchi M, Sakura Y (2004b) Use of temperature profiles and stable isotopes to trace flow lines: Nagaoka Area, Japan. Ground Water 42:83–91CrossRefGoogle Scholar
  35. Salem ZE, Gaame OM, Hassan TM (2008) Using temperature logs and hydrochemistry as indicators for seawater intrusion and flow lines of groundwater in Quaternary aquifer, Nile Delta, Egypt, 5th International Symposium on Geophysics (ISG 5). 27–29 Nov 2007, pp 25–38Google Scholar
  36. Sass JH, Lachenbruch AH, Dudley WW Jr, Priest SS, Munroe RJ (1988) Temperature, thermal conductivity and heat flow near Yucca Mountain, Nevada: some tectonic and hydrologic implications. US Geol Surv Open File Rep 87-649Google Scholar
  37. Taniguchi M, Shimada J, Tanaka T, Kayane I, Sakura Y, Shimano Y, Dapaah-Siakwan S, Kawashima S (1999) Disturbances of temperature-depth profiles due to surface climate-change and subsurface water flow: (1) an effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Japan. Water Resour Res 35:1507–1517Google Scholar
  38. Uchida Y, Sakura Y, Anderson MP (1999) Subsurface temperature field in the Nobi Plain, central Japan. In: Sakura Y, Tang C (eds) Proceedings of the International Symposium on Groundwater in Environmental Problems, Chiba University, Chiba, Japan, pp 43–46Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Geology Department, Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Ministry of Irrigation and Water ResourcesGizaEgypt

Personalised recommendations