Advertisement

Hydrogeology Journal

, Volume 24, Issue 4, pp 905–921 | Cite as

Long-term spatio-temporal precipitation variability in arid-zone Australia and implications for groundwater recharge

  • R. Ian Acworth
  • Gabriel C. Rau
  • Mark O. Cuthbert
  • Evan Jensen
  • Keith Leggett
Paper

Abstract

Quantifying dryland groundwater recharge as a function of climate variability is becoming increasingly important in the face of a globally depleted resource, yet this remains a major challenge due to lack of adequate monitoring and the complexity of processes involved. A previously unpublished and unique dataset of high density and frequency rainfall measurements is presented, from the Fowlers Gap Arid Zone Research Station in western New South Wales (Australia). The dataset confirms extreme spatial and temporal variability in rainfall distribution which has been observed in other dryland areas and is generally explained by the dominance of individual storm cells. Contrary to previous observations, however, this dataset contains only a few localised storm cells despite the variability. The implications of spatiotemporal rainfall variability on the estimation of groundwater recharge is assessed and show that the most likely recharge mechanism is through indirect and localised, rather than direct, recharge. Examples of rainfall and stream gauge height illustrate runoff generation when a spatially averaged threshold of 15–25 mm (depending on the antecedent moisture conditions) is exceeded. Preliminary assessment of groundwater levels illustrates that the regional water table is much deeper than anticipated, especially considering the expected magnitude of indirect and localised recharge. A possible explanation is that pathways for indirect and localised recharge are inhibited by the large quantities of Aeolian dust observed at the site. Runoff readily occurs with water collecting in surface lakes which slowly dry and disappear. Assuming direct groundwater recharge under these conditions will significantly overestimate actual recharge.

Keywords

Australia Groundwater recharge/water budget Groundwater monitoring Groundwater/surface-water relations Arid regions 

Variabilité spatiotemporelle sur le long terme des précipitations en zone aride en Australie et conséquences sur la recharge

Résumé

Quantifier la recharge des eaux souterraines en zone aride en fonction de la variabilité du climat devient de plus en plus important face à une ressource globalement épuisée, pourtant ceci reste un défi majeur en raison du manque de surveillance adaptée et de la complexité des processus impliqués. Un ensemble de données, non publié à ce jour et unique, concernant des mesures de précipitations de fortes densité et fréquence du Centre de Recherche Fowlers Gap Arid Zone en Nouvelle-Galles du Sud occidentale (Australie) est présenté. Le jeu de données confirme l’extrême variabilité spatiale et temporelle de la distribution des précipitations qui a été observée dans d’autres zones arides et est généralement expliquée par la dominance de cellules d’orage individuelles. Contrairement aux observations antérieures, cependant, cet ensemble de données contient seulement quelques cellules d’orage localisées malgré la variabilité des précipitations. Les conséquences de la variabilité spatio-temporelle des précipitations sur l’évaluation de la recharge des eaux souterraines sont évaluées et prouvent que le mécanisme de recharge le plus probable est indirect et localisé, plutôt que direct. Les exemples de précipitations et des hauteurs d’eau des cours d’eau aux stations de jaugeage illustrent la génération d’écoulement superficiel quand un seuil spatialement moyenné de 15–25 mm (selon les conditions antérieures d’humidité) est dépassé. Des évaluations préliminaires des niveaux d’eaux souterraines illustrent que le niveau piézométrique au niveau régional est beaucoup plus profond que prévu, en particulier en raison de l’amplitude attendue de la recharge indirecte et localisée. Une explication possible est que les voies de la recharge indirecte et localisée sont inhibées par de grandes quantités de poussière éolienne observées sur le site. L’écoulement superficiel se produit aisément avec de l’eau se rassemblant dans des lacs de surface qui s’assèchent lentement et disparaissent. L’hypothèse d’une recharge directe dans ces conditions surestimera de manière significative la recharge réelle.

Variabilidad espacio-temporal a largo plazo de la precipitación en una zona árida de Australia y las implicancias en la recarga del agua subterránea

Resumen

La cuantificación de la recarga del agua subterránea en tierras secas en función de la variabilidad del clima es cada vez más importante ante el agotamiento global de los recursos, sin embargo, este sigue siendo un gran desafío debido a la falta de un monitoreo adecuado y de la complejidad de los procesos involucrados. Se presenta un conjunto de datos únicos e inéditos de mediciones de alta densidad y frecuencia de precipitaciones, de la Fowlers Gap Arid Zone Research Station en el oeste de Nueva Gales del Sur (Australia). El conjunto de datos confirma una variabilidad espacial y temporal extrema en la distribución de las precipitaciones que se ha observado en otras zonas de tierras secas y que se explica generalmente por el predominio de las células de tormentas individuales. Sin embargo, contrariamente a las observaciones anteriores, este conjunto de datos contiene sólo unas pocas células de tormentas localizadas a pesar de la variabilidad. Se evalúan las implicancias de la variabilidad espacio-temporal de lluvia en la estimación de la recarga del agua subterránea y se muestra que el mecanismo de recarga más probable es a través de una recarga indirecta y localizada, en lugar de directa. Los ejemplos de lluvia y altura de las corrientes ilustran la generación de escurrimiento superficial cuando se supera un umbral espacialmente promediado de 15 a 25 mm (dependiendo de las condiciones de humedad antecedente). La evaluación preliminar de los niveles de agua subterránea ilustra que el nivel freático regional es más profundo que lo previsto, sobre todo teniendo en cuenta la magnitud esperada de la recarga indirecta y localizada. Una posible explicación es que trayectorias para la recarga indirecta y localizada están inhibidas por las grandes cantidades de polvo eólico observado en el sitio. El escurrimiento superficial se produce fácilmente con el agua almacenada en los lagos superficiales que lentamente se secan y desaparecen. Suponer que una recarga del agua subterránea directa en estas condiciones sobrestimarán significativamente recarga actual.

澳大利亚干旱地区降水长期的时空变化及对地下水补给的影响

摘要

面对着全球枯竭的资源,根据气候变化定量干旱地区地下水补给越来越重要,然而,由于缺乏充足的监测及所涉及过程的复杂性,这个问题忍让是一个主要挑战。这里展示了从(澳大利亚新南威尔士州西部的Fowlers Gap干旱地区研究站)获取的先前出版的及独一无二的高密度和高频率降雨测量结果数据集。数据集证实了降雨分布的极端空间和时间变化,这种极端的时空变化在其他干旱地区也能观测到,通常是由个别的暴雨决定的。然而,与先前的观测结果相反,这个数据集尽管有时空上的变化,但只含有几场局部的暴雨。评价了时空降雨变化对估算地下水补给的影响,影响显示,最可能的补给机理是非直接的和局部的补给,而不是直接的补给。降雨和暴雨水位高度的例子描述了当超过空间上平均临界值15–25 mm时(取决于先前的含水状态)径流的产生情况。地下水位初步评价结果显示,区域水位比预期深的多,特别是就非直接和局部补给的预期量级而论。可能的解释就是非直接和和局部补给的通道被现场观测到的大量风尘所抑制。径流很容易出现,汇集到地表湖中,然后慢慢干涸和消失。在这些条件下假设的地下水直接补给大大高估了实际补给量。

Variabilidade espaço-temporal da precipitação em longo prazo em uma região árida da Austrália e suas implicações na recarga das águas subterrâneas

Resumo

A quantificação da recarga das águas subterrâneas em regiões áridas, decorrentes das mudanças climáticas, está se tornando cada vez mais importante, em face de um cenário global de escassez de recursos. Contudo, estudos deste tipo são um grande desafio devido à falta de uma rede de monitoramento adequada e a complexidade envolvida no processo de recarga. Este estudo apresenta um conjunto de dados (dataset), nunca antes publicados, de precipitação com grande densidade e frequência gerados pela estação de pesquisa Fowlers Gap Arid Zone, localizada na região oeste de Nova Gales do Sul (Austrália). O dataset confirma a variabilidade espacial e temporal extrema na distribuição da precipitação que tem sido observada em outras regiões áridas, o que é explicada, em geral, pelo predomínio de células individuais de tempestades. No entanto, este estudo contraria constatações passadas, uma vez que o dataset contém apenas algumas poucas células de tempestade localizadas, apesar de sua variabilidade. As implicações da variabilidade espaço-temporal da precipitação na estimativa da recarga das águas subterrâneas avaliada demonstra que o mecanismo de recarga é provavelmente um fenômeno indireto e localizado, e não direto como se pensava. Exemplos de precipitação e elevação de córregos ilustram a geração do escoamento superficial quando se excede uma precipitação média de 15–25 mm (dependendo da condição da umidade antecedente). Estudos preliminares dos níveis das águas subterrâneas demonstram que a superfície piezométrica é muito mais profunda do que se imaginava, principalmente levando em consideração a magnitude esperada dos efeitos indiretos e localizados da recarga. Uma possível explicação é que os caminhos para a recarga localizada e indireta são inibidos pela grande quantidade de poeira Aeoliana observada na área de estudo. O escoamento superficial ocorre de maneira rápida, ocasionando a retenção da água em lagoas que secam lentamente e desaparecem. Considerar a recarga direta das águas subterrâneas nessas condições faz com que essa seja demasiadamente superestimada.

Notes

Acknowledgements

The team at Fowlers Gap Arid Zone Research Station (https://www.fowlersgap.unsw.edu.au) are thanked for their support, for allowing their records to be digitised and for escorting us around the endless tracks of the station to find the rain gauges. The NCRIS National Research Infrastructure for Australia scheme of the Australian Federal Government provided the funding to establish the network of tipping-bucket rain gauges. MOC was supported by funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement No. 299091. The UNSW Australia Water Research Laboratory provided the data warehouse facilities (http://datawarehouse.wrl.unsw.edu.au). Geoscience Australia is acknowledged for the digital elevation dataset used for catchment delineation and mapping, and eAtlas (http://eatlas.org.au) for the Bancannia Basin outline used in Fig. 1.

References

  1. Acworth RI (1981) The evaluation of groundwater resources in the crystalline basement of Northern Nigeria. PhD Thesis, University of Birmingham, UK. Available at etheses.bham.ac.uk/3576/. Accessed December 2014
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration (guidelines for computing crop water requirements). FAO irrigation and drainage paper no. 56, FAO, Rome. www.fao.org/docrep/XO490E/XO490E00.htm. Accessed December 2014
  3. Beavis FC, Beavis JC (1984) Geology, engineering geology and hydrogeology of Fowlers Gap station: research series no. 6. pp 85–110. https://www.fowlersgap.unsw.edu.au/research-list. Accessed December 2014
  4. Bell FC (1973) Climate of Fowlers Gap station, chap 3. In: Lands of Fowlers Gap station, New South Wales: research series no. 3. pp 45–63. https://www.fowlersgap.unsw.edu.au/research-list. Accessed December 2014
  5. BoM (2015) Bureau of Meteorology, Fowlers Gap climate data. http://www.bom.gov.au/climate/dwo/IDCJDW2155.latest.shtml. Accessed December 2014
  6. Cordery I (2004) Arid zone surface runoff: a significant resource in Australia. Aust J Water Eng 8(1):37–42Google Scholar
  7. Cordery I, Pilgrim D, Doran DG (1983) Some hydrological characteristics of arid western New South Wales. Hydrology and water resources symposium, Hobart, Australia, 8–10 November 1983. The Institution of Engineers, Barton, AustraliaGoogle Scholar
  8. Crosbie R, McCallum J, Walker G, Chiew F (2008) Diffuse groundwater recharge modelling across the Murray-Darling basin. Report to the Australian Government from the CSIRO Murray-Darling basin Sustainable Yields Project, Clayton, SA, AustraliaGoogle Scholar
  9. Cuthbert MO (2010) An improved time series approach for estimating groundwater recharge from groundwater level fluctuations. Water Resour Res 46:W09515CrossRefGoogle Scholar
  10. Cuthbert MO (2014) Straight thinking about groundwater recession. Water Resour Res 50:2407–2424CrossRefGoogle Scholar
  11. Cuthbert MO, Ashley GM (2014) A spring forward for hominin evolution in East Africa. PLoS ONE 9:e107358 (IF 3.53)CrossRefGoogle Scholar
  12. De Dekker P, Munday CI, Brocks J, O’Loingsigh, Allison GE, Hope J, Norman M, Stuut J-B W, Tapper NJ, van der Kaars S (2014) Characterisation of the major dust storm that traversed over eastern Australia in September 2009: a multidisciplinary approach. Aeolian Res 15:133–149CrossRefGoogle Scholar
  13. de Vries J, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10(1):5–17. doi: 10.1007/s10040-001-0171-7 CrossRefGoogle Scholar
  14. FGAZRS (2015) Fowlers Gap research station. https://www.fowlersgap.unsw.edu.au/research-list. Accessed January 2015
  15. Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge, UKGoogle Scholar
  16. Howard KWF, Lloyd JW (1979) The sensitivity of parameters in the Penman evaporation equations and direct recharge balance. J Hydrol 41:329–344CrossRefGoogle Scholar
  17. Keys JF, Heidenreich SK, Strong CL, McTainsh GH, Quigley S (2011) PM10 concentrations and mass transport during “Red Dawn”: Sydney 23 September 2009. Aeolian Res 3:327–342CrossRefGoogle Scholar
  18. Koppen W (1936) Das Geographische System der Klimate: Handbuch der Klimatologie 1 [The geographical system of climate: handbook of climatology 1]. World climate maps, Borntraeger, BerlinGoogle Scholar
  19. Kowal JM, Kassam AH (1978) Agricultural ecology of savanna: a study of West Africa. Oxford University Press, Oxford, UKGoogle Scholar
  20. Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. Int Contrib Hydrogeol 8, Heise, Hanover, GermanyGoogle Scholar
  21. Lloyd JW (1986) A review of aridity and groundwater. Hydrol Process 1:63–78CrossRefGoogle Scholar
  22. Mabbutt JA (1973) Geomorphology of Fowlers Gap Station, chap 5. In: Lands of Fowlers Gap Station, New South Wales: research series no. 3. pp 85–119. https://www.fowlersgap.unsw.edu.au/research-list. Accessed December 2014
  23. Macdonald BCT (2000) University of New South Wales Fowlers Gap Arid Zone Research Station: nearly 50 years of research. Rangel J 22(1):5–31CrossRefGoogle Scholar
  24. NCRIS (2015) Fowlers Gap data. National Collaborative Research Infrastructure Support. Available at http://www.connectedwaters.unsw.edu.au/ncris/groundwater-database. Accessed January 2015
  25. Osborne HB, Renard KG, Simanton JR (1979) Dense networks to measure convective rainfalls in southwestern United States. Water Resour Res 15:1701–1711CrossRefGoogle Scholar
  26. Rushton KR (2003) Groundwater hydrology: conceptual and computer models. Wiley, Chichester, UKGoogle Scholar
  27. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20(15):3335–3370. doi: 10.1002/hyp.6335 CrossRefGoogle Scholar
  28. Schaetzl RJ, Thompson ML (2015) Soils genesis and geomorphology, 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  29. Shanafield M, Cook PG (2014) Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: a review of applied methods. J Hydrol 511:518–529. doi: 10.1016/j.jhydrol.2014.01.068 CrossRefGoogle Scholar
  30. Sharon D (1981) The distribution in space of local rainfall in the Namib Desert. J Climatol 1:69–75CrossRefGoogle Scholar
  31. Soliman MM (2010) Engineering hydrology of arid and semi-arid regions. CRC, Boca Raton, FLGoogle Scholar
  32. Taylor R (2014) Hydrology: when wells run dry. Nature 516(7530):179–180. doi: 10.1038/516179a CrossRefGoogle Scholar
  33. Taylor RG, Todd MC, Kongola L, Maurice L, Nahozya E, Sanga H, MacDonald AM (2012a) Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat Clim Chang 3(3):374–378. doi: 10.1038/nclimate1731
  34. Taylor RG, Scanlon B, Doll P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow K, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh PJF, Holman I, Treidel H (2012b) Ground water and climate change. Nat Clim Chang 3(3):322–329. doi: 10.1038/nclimate1744
  35. Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  36. UNDDD (2015) Decade for deserts and fight against desertification. United Nations, New York. http://www.un.org/en/events/desertification_decade/whynow.shtml. Accessed January 2015
  37. UNEP (2011) Global drylands: a UN system-wide response. Report, United Nations Environment Management Group, GenevaGoogle Scholar
  38. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20):L20402. doi: 10.1029/2010GL044571 CrossRefGoogle Scholar
  39. Ward CR, Sullivan ME (1973) Geology of Fowlers Gap Station, chap 4. In: Lands of Fowlers Gap Station, New South Wales: research series no. 3. pp 67–83. https://www.fowlersgap.unsw.edu.au/research-list. Accessed December 2014
  40. World Meteorological Organisation (1969) Manual for depth-area-duration analysis of storm rainfall Geneva: WMO no. 237, Tech Paper 129, WMO, Geneva, pp 1–31Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. Ian Acworth
    • 1
  • Gabriel C. Rau
    • 1
  • Mark O. Cuthbert
    • 2
  • Evan Jensen
    • 1
  • Keith Leggett
    • 3
  1. 1.Connected Waters Initiative Research Centre (CWI), School of Civil and Environmental EngineeringUNSW AustraliaManly ValeAustralia
  2. 2.School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
  3. 3.Fowlers Gap Arid Zone Research StationUNSWSydneyAustralia

Personalised recommendations