Skip to main content

Advertisement

Log in

Sinkhole formation and subsidence along the Dead Sea coast, Israel

Formation de doline et d’effondrement le long de la côte de la Mer Morte, Israël

Formación de sumideros y subsidencia a lo largo de la costa del Mar Muerto, Israel

以色列沿死海沿岸落水洞形成及沉降

Formação de sumidouros e subsidência ao longo da costa do Mar Morto, Israel

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

More than 4,000 sinkholes have formed since the 1980s within a 60-km-long and 1-km-wide strip along the western coast of the Dead Sea (DS) in Israel. Their formation rate accelerated in recent years to >400 sinkholes per year. They cluster mostly in specific sites up to 1,000 m long and 200 m wide, which align parallel to the general direction of the fault systems associated with the DS Rift. The abrupt appearance of the sinkholes reflects changes to the groundwater regime around the shrinking DS. The eastward retreat of the shoreline and the lake-level drop (1 m/year in recent years) cause an eastward and downward migration of the fresh/saline groundwater interface. Consequently, a subsurface salt layer, which was previously enveloped by saline groundwater, is gradually being invaded and submerged by relatively fresh groundwater, and cavities form due to the rapid dissolution of the salt. Collapse of the overlying sediments into these cavities results in sinkholes at the surface. An association between sinkhole sites and land subsidence is revealed by interferometric synthetic aperture radar (InSAR) measurements. On a broad scale (hundreds of meters), subsidence occurs due to compaction of fine-grained sediments as groundwater levels decline along the retreating DS shoreline. At smaller scales (tens of meters), subsidence appears above subsurface cavities in association with the sinkholes, serving in many cases as sinkhole precursors, a few weeks to more than a year before their actual appearance at the surface. This paper overviews the processes of sinkhole formation and their relation to land subsidence.

Résumé

Plus de 4,000 dolines se sont formées depuis les années 1980 dans une bande de 60 km de long et d’1 km de large le long de la côte occidentale de la Mer Morte (MM) en Israël. Leur taux de formation s’est accéléré au cours des dernières années, avec plus de 400 dolines par an. Elles forment par coalescence sur certains sites spécifiques des dépressions atteignant jusqu’à 1,000 m de long et de 200 m de largeur, selon un alignement parallèle à la direction générale des systèmes de failles associés au rift de la MM. La brusque apparition des dolines reflète les changements de régime des eaux souterraines autour du rétrécissement de la MM. Le retrait vers l’est du trait de côte et la baisse du niveau d’eau de la mer (1 m/an ces dernières années) provoquent une migration vers l’est et vers le bas de l’interface entre eau douce souterraine et eau salée. En conséquence, une couche de sel dans le sous-sol, qui a été précédemment le siège d’eau souterraine salée, est progressivement envahie et submergée par des eaux souterraines relativement douces, et les cavités se forment à cause de la dissolution rapide du sel. L’effondrement des sédiments sus-jacents dans ces cavités donne lieu à la formation de dolines en surface. La relation entre les sites de dolines et les affaissements de terrain est révélée par des mesures de radar interférométrique à synthèse d’ouverture (InSAR). Sur une large échelle (plusieurs centaines de mètres), l’affaissement des terrains se produit à cause de la compaction des sédiments fins, les niveaux d’eau souterraine déclinant le long du retrait du trait de côte de la MM. A des échelles plus petites (quelques dizaines de mètres), l’affaissement des terrains apparaît au-dessus des cavités souterraines associées aux dolines, servant dans de nombreux cas comme précurseurs à la formation des dolines, de quelques semaines à plus d’une année, avant leur apparence actuelle en surface. Cet article passe en revue les processus de formation des dolines et leur relation avec l’affaissement des terrains.

Resumen

Se han formado más de 4,000 sumideros desde la década de 1980 dentro de una franja de 60 km de largo y 1 km de ancho a lo largo de la costa occidental del Mar Muerto (DS) en Israel. Sus ritmos de formación se aceleraron en los últimos años a más de 400 sumideros por año. Ellos se agrupan principalmente en sitios específicos de hasta 1,000 m de longitud y 200 m de ancho, que se alinean paralelamente a la dirección general de los sistemas de fallas asociadas con el Rift del DS. La brusca aparición de los sumideros refleja cambios en el régimen del agua subterránea en alrededor de la reducción del DS. El retroceso hacia el este de la línea de costa y la caída de nivel de lago (1 m/año en los últimos años) causa una migración hacia el este y hacia abajo de la interfaz agua subterránea dulce / salada. En consecuencia, una capa subsuperficial de sal, que previamente estaba envuelta por agua subterránea salada, está siendo gradualmente invadida y sumergida por el agua subterránea relativamente dulce, y se forman las cavidades debido a la rápida disolución de la sal. El colapso de los sedimentos suprayacentes dentro de las cavidades producen los sumideros en la superficie. Las mediciones del radar interferométrico de apertura sintética (InSAR) revelan la asociación entre los sitios de sumidero y la subsidencia del terreno. En una escala amplia (cientos de metros), la subsidencia se produce debido a la compactación de los sedimentos de grano fino cuando niveles freáticos descienden a lo largo del retroceso de la línea de la costa del DS. A escalas más pequeñas (decenas de metros) la subsidencia aparece encima de las cavidades subsuperficiales en asociación con los sumideros, sirviendo en muchos casos como precursores del sumidero, unas pocas semanas a más de un año antes de la aparición en la superficie. Este trabajo repasa los procesos de formación de los sumideros y su relación con la subsidencia del terreno.

摘要

自从20世纪80年以来,沿以色列死海西岸长60公里宽1公里的地带形成了4,000多个落水洞。其形成速度加快,每年400多个。他们主要群聚在100米长、200米宽的特定地点,与死海裂缝相关的断层系统大体方向平行。落水洞的突然出现反映了正在收缩的死海周围地下水状况的变化。海岸线的向东后撤死海水面的下降(近年来每年一米)引起了淡水/咸水地下水界面的向东和向下迁移。因此,一个先前被咸水包围的地下盐层逐渐被相对淡的地下水入侵和淹没,由于盐层的快速溶解,形成洞穴。上伏沉积层塌陷进入洞穴导致地表出现落水洞。合成孔径雷达(InSAR)测量揭示了落水洞地点和地面沉降的关联性。在广泛的范围上(几百米),随着地下水位沿后退的死海海岸线下降,由于细颗粒沉积物的压实,出现沉降。在教小的范围(几十米),沉降出现在与落水洞有关的地下洞穴之上,在很多情况下,充当着落水洞的先驱,几周到一年多后落水洞才会在地面出现。本文概述了落水洞的形成过程及其与地面沉降的关系。

Resumo

Mais de 4,000 sumidouros se formaram desde os anos 1980 dentro de uma faixa com 60 km de comprimento e 1 km de largura ao longo da costa oeste do Mar Morto (MM) em Israel. A taxa de formação acelerou nos últimos anos para mais de 400 sumidouros por ano. Em sua maioria, eles se agrupam em locais específicos com 1,000 m de comprimento e 200 m de largura, que se alinham paralelamente à direção geral do sistema de fissuras associado com a falha do MM. O surgimento abrupto dos sumidouros reflete mudanças no regime das águas subterrâneas em torno do MM em retração. O recuo para o leste da orla e a queda no nível do lago (1 m/ano nos últimos anos) causa a migração da interface das águas subterrâneas doces/salinas para leste e em profundamente. Consequentemente, uma camada de sal em subsuperfície, que anteriormente era envolta em água subterrânea salina, está gradualmente sendo invadida e submergida por água subterrânea relativamente doce, e cavidades se formam pela rápida dissolução de sal. O colapso dos sedimentos sobrepostos nas cavidades resulta em sumidouros na superfície. Uma associação entre os locais de sumidouro e a subsidência de terreno foi revelada pelas medidas pelo radar de abertura sintética interferométrica (InSAR). Em uma escala ampla (centenas de metros), a subsidência ocorre pela compactação dos sedimentos finos com o declínio dos níveis das águas subterrâneas ao longo do recuo da orla do MM. Em escalas menores (dezenas de metros) a subsidência aparece acima das cavidades em subsuperfície em associação com os sumidouros, servindo em muitas vezes como precursoras dos sumidouros, de poucas semanas até um ano antes do seu surgimento em superfície. Esse trabalho resgata os processos de formação dos sumidouros e a relação deles com a subsidência de terreno.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abelson M, Baer G, Shtivelman V, Wachs D, Raz E, Crouvi O, Kurzon I, Yechieli Y (2003) Collapse-sinkholes and radar interferometry reveal neotectonics concealed within the Dead Sea basin. Geophys Res Lett 30:1545. doi:10.1029/2003GL017103

    Article  Google Scholar 

  • Abelson M, Yechieli Y, Crouvi O, Baer G, Wachs D, Bein A, and Shtivelman V (2006) Evolution of the Dead Sea sinkholes. In: Enzel Y, Agnon A, Stein M (eds) New frontiers in Dead Sea paleoenvironmental research. Geol Soc of Am Spec Pap 401:241–253

  • Arad A, Michaeli A (1967) Hydrogeological investigations in the western catchments of the Dead Sea. Isr J Earth Sci 16:181–196

    Google Scholar 

  • Arkin Y, Gilat A (2000) Dead Sea sinkholes: an ever-developing hazard. Environ Geol 39:711–722

    Article  Google Scholar 

  • Baer G, Schattner U, Wachs D, Sandwell D, Wdowinski S, Frydman S (2002) The lowest place on Earth is subsiding: an InSAR (interferometric synthetic aperture radar) perspective. Geol Soc Am Bull 114(1):12–23

    Article  Google Scholar 

  • Bartov Y, Stein M, Enzel Y, Agnon A, Reches Z (2002) Lake levels and sequence stratigraphy of Lake Lisan, the late Pleistocene precursor of the Dead Sea. Quat Res 57:9–21

    Article  Google Scholar 

  • Begin B, Ehrlich A, Nathan Y (1974) Lake Lisan, the Pleistocene precursor of the Dead Sea. Geol Surv Israel Bull 63, 30 pp

  • Ben-Avraham Z, Garfunkel Z, Lazar M (2008) Geology and evolution of the southern Dead Sea fault with emphasis on subsurface structure. Annu Rev Earth Planet Sci 36:357–387

    Article  Google Scholar 

  • Bookman (Ken-Tor) R, Enzel Y, Agnon A, Stein M (2004) Late Holocene lake levels of the Dead Sea. Geol Soc Am Bull 116:555–571

    Article  Google Scholar 

  • Closson D, Abou Karaki N, Klinger Y, Jad Hussein M (2005) Subsidence and sinkhole hazard assessment in the southern Dead Sea area. Jordan Pure Appl Geophys 162:221–248

    Article  Google Scholar 

  • Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Rem Sens 36(3). doi: 10.1109/36.673674

  • Ezersky M, Frumkin A (2013) Fault–dissolution front relations and the Dead Sea sinkhole problem. Geomorphology 201:35–44

    Article  Google Scholar 

  • Farr T, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. EOS Trans Am Geophys Union 81:583–585

    Article  Google Scholar 

  • Galloway D, Jones DR, Ingberitsen SE (1999) Land subsidence in the United States. U S Geol Surv Circ 1182, 177 pp

  • Garfunkel Z (1997) The history and formation of the Dead Sea basin. In: Niemi TM, Ben-Avraham Z, Gat JR (eds) The Dead Sea, the lake and its setting. Oxford University Press, New York, pp 36–56

    Google Scholar 

  • Gavrieli I, Starinsky A, Bein A (1989) The solubility of halite as a function of temperature in the highly saline Dead Sea brine system. Limnol Oceanogr 34:1224–1234

    Article  Google Scholar 

  • Gavrieli I, Yechieli Y, Halicz L, Spiro B, Bein A, Efron D (2001) The sulfur system in anoxic subsurface brines and its implication in brine evolutionary pathways: the Ca-chloride brines in the Dead Sea area. Earth Planet Sci Lett 186:199–213

    Article  Google Scholar 

  • Gutiérrez F, Johnson KS, Cooper AH (eds) (2008) Evaporite karst processes, landforms and environmental problems. Environ Geol 53(1):935–1105

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Hole-filled SRTM for the globe. Version 3, available from the CGIAR-CSI SRTM 90m Database. http://srtm.csi.cgiar.org. Accessed November 2015

  • Johnson KS (1997) Evaporite karst in the United States. Carbon Evapor 12:2–14

    Article  Google Scholar 

  • Kafri U, Yechieli Y (2010) Groundwater base level changes and adjoining hydrogeological systems. Springer, Heidelberg, Germany, 171 pp

  • Kiro Y, Yechieli Y, Shalev E, Lyakhovsky V, Starinsky A (2008) Time response of the water table and saltwater transition zone to a base level drop. Water Resour Res 44:1–15

    Article  Google Scholar 

  • Krumgalz BS, Hecht A, Starinsky A, Katz A (2000) Thermodynamic constraints on Dead Sea evaporation: can the Dead Sea dry up? Chem Geol 165:1–11

    Article  Google Scholar 

  • Martinez JD, Johnson KS, Neal JT (1998) Sinkholes in evaporite rocks. Am Sci 86:38–51

    Article  Google Scholar 

  • Massonnet D, Feigl KL (1998) Radar interferometry and its applications to changes in the Earth’s surface. Rev Geophys 36:441–500

  • Neev D, Emery KO (1967) The Dead Sea. Geol Surv Israel Bull 41:1–147

  • Nof RN, Baer G, Ziv A, Raz E, Atzori S, Salvi S (2013) Sinkhole precursors along the Dead Sea Israel, revealed by SAR interferometry. Geology. doi:10.1130/G34505.1

    Google Scholar 

  • Picard L (1943) Structure and evolution of Palestine with comparative notes on neighboring countries. Hebr Univ Geol Depart Bull 4(2–4):1–187

  • Rosen PA, Henseley S, Peltzer G, Simons M (2004) Updated repeat orbit interferometry package released. EOS Trans Am Geophys Union 85(5):35

    Google Scholar 

  • Sagy A, Reches Z, Agnon A (2003) Multiscale 3D architecture and mechanics of the margins of the Dead Sea pull-apart. Tectonics 22:1004. doi:10.1029/2001TC001323

    Article  Google Scholar 

  • Shalev E, Lyakhovsky V, Yechieli Y (2006) Salt dissolution and sinkhole formation along the Dead Sea shore. J Geophys Res 111(B3). doi: 10.1029/2005JB004038

  • Sneh A (1979) Late Pleistocene fan-deltas along the Dead Sea Rift. J Sediment Petrol 49:541–552

    Google Scholar 

  • Stein M, Torfstein A, Gavrieli I, Yechieli Y (2010) Abrupt aridities and salt deposition in the post-glacial Dead Sea and their North Atlantic connection. Quat Sci Rev 29:567–575

    Article  Google Scholar 

  • Taqieddin SA, Abderahman NS, Atallah M (2000) Sinkhole hazards along the eastern Dead Sea shoreline area, Jordan: a geological and geotechnical consideration. Environ Geol 39:1237–1253

    Article  Google Scholar 

  • Terzaghi K (1925) Principles of soil mechanics, IV: settlement and consolidation of clay. Eng News-Record 95:874–878

    Google Scholar 

  • Werner C, Wegmuller U, Strozzi T, Weismann A (2003) Interferometric point target analysis for deformation mapping. Proceedings of IGARSS’03, Toulouse, France, July 2003

  • Yechieli Y (1993) The effects of water level changes in closed lakes (Dead Sea) on the surrounding groundwater and country rocks. PhD Thesis, Weizmann Institute of Science, Rehovot, Israel, 197 pp

  • Yechieli Y (2000) Fresh-saline groundwater interface in the Western Dead Sea area. Groundwater 38:615–623

    Article  Google Scholar 

  • Yechieli Y, Magaritz M, Levy Y, Weber U, Kafri U, Woelfli W, Bonani G (1993) Late Quaternary geological history of the Dead Sea area, Israel. Quat Res 39:59–67

    Article  Google Scholar 

  • Yechieli Y, Ronen D, Berkovitz B, Dershovitz WS, Hadad A (1995) Aquifer characteristics derived from the interaction between water levels of a terminal lake (Dead Sea) and an adjacent aquifer. Water Resour Res 31(4):893–902

    Article  Google Scholar 

  • Yechieli Y, Gavrieli I, Ronen D, Berkovitz B (1998) Will the Dead Sea die? Geology 26:755–758

    Article  Google Scholar 

  • Yechieli Y, Abelson M, Bein A, Shtivelman V, Crouvi O, Wachs D, Baer G, Kalvo R, Lyakhovsky V (2004) Formation of sinkholes along the shore of the Dead Sea: summary of finding from the second stage of research (in Hebrew). Geological Survey report GSI/41/2004, Israel Geological Survey, Jerusalem, 34 pp

  • Yechieli Y, Abelson M, Bein A, Crouvi O, Shtivelman V (2006) Sinkholes “swarms” along the Dead Sea coast: reflection of disturbance of lake and adjacent groundwater systems. GSA Bull 118:1075–1087

    Article  Google Scholar 

  • Zak I (1967) The geology of Mount Sedom (in Hebrew, English summary). PhD Thesis, The Hebrew University, Jerusalem, 208 pp

Download references

Acknowledgements

This research was supported by funding allocated by the Ministry of Tourism, the Ministry of Environmental Protection, and the Ministry of National Infrastructures, Energy and Water resources, and by grant 958/13 from the Israel Science Foundation (ISF). We thank D. Wachs and A. Bein for their major contribution in the early stages of this project, V. Lyakhovsky and E. Shalev for discussions, the Pamco drilling team (Shmulik and Avram), H. Hemo for invaluable field work, E. Raz for help in the field, and B. Cohen and H. Netzer for their help with the graphics. The InSAR processing was carried out using CSK® products, ©ASI (the Italian Space Agency), delivered under an ASI license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoseph Yechieli.

Additional information

Published in the theme issue “Land Subsidence Processes”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yechieli, Y., Abelson, M. & Baer, G. Sinkhole formation and subsidence along the Dead Sea coast, Israel. Hydrogeol J 24, 601–612 (2016). https://doi.org/10.1007/s10040-015-1338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1338-y

Keywords

Navigation