Advertisement

Hydrogeology Journal

, Volume 24, Issue 3, pp 587–600 | Cite as

Review: Advances in delta-subsidence research using satellite methods

  • Stephanie A. HigginsEmail author
Paper

Abstract

Most of the world’s major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.

Keywords

Review Geohazards Subsidence Groundwater extraction Relative sea-level rise 

Revue: Progrès de la recherche sur la subsidence des deltas en utilisant des méthodes satellitaires

Résumé

La plupart des principaux deltas fluviaux du monde s’affaissent par rapport au niveau local de la mer. Les effets de la subsidence peuvent comprendre la salinisation des aquifères, la dégradation des infrastructures, l’augmentation de la vulnérabilité aux inondations et aux tempêtes, et l’inondation permanente des terres situées en basse altitude. Par conséquent, la détermination de l’importance relative des pressions naturelles versus anthropiques présentes dans le processus de subsidence du delta est actuellement un sujet de recherche. Cet article présente une revue des connaissances relatives à la perte d’altitude du delta. Ce domaine progresse rapidement en raison du développement des applications des techniques spatiales : InSAR (radar interférométrique à ouverture de synthèse), GPS (systèmes de positionnement mondial), et altimétrie des océans par satellite. Ces techniques apportent un nouvel éclairage sur une variété des processus de subsidence, y compris la tectonique, l’ajustement isostatique, et la variabilité spatio-temporelle de la compaction sédimentaire. Ils confirment également que la subsidence associée à une extraction de fluide peut dépasser l’élévation globale moyenne du niveau de la mer jusqu’à deux ordres de grandeur, avec pour résultat une élévation effective du niveau de la mer qui est cent fois plus rapide que le taux eustatique. Dans les années à venir, les instruments spatiaux et aéroportés vont être essentiels pour fournir une surveillance en temps quasi réel pour faciliter les prises de décisions relatives à la gestion dans les deltas en subsidence. Cependant, des observations au sol continuent d’être nécessaires pour générer des mesures complètes du changement des surfaces d’élévation. La modélisation numérique devrait chercher à simuler des couplages entre les processus de subsidence pour une plus grande capacité prédictive.

Revisión: Avances en la investigación de la subsidencia de deltas usando métodos satelitales

Resumen

La mayoría de los deltas de los principales ríos del mundo se están hundiendo en relación con el nivel del mar local. Los efectos de la subsidencia pueden incluir la salinización de acuíferos, daños a la infraestructura, el aumento de la vulnerabilidad a las inundaciones y a las ondas de tormentas y la inundación permanente de las tierras bajas. En consecuencia, la determinación de la importancia relativa de presiones naturales vs antropogénicas en la conducción de la subsidencia del delta es un tema de investigación en curso. En este artículo se presenta una revisión de los conocimientos con respecto a la pérdida de elevación de la superficie de un delta. El campo está avanzando rápidamente debido a las aplicaciones de técnicas basadas espacialmente: InSAR (radar interferométrico de apertura sintética), GPS (sistemas de posicionamiento global), y altimetría oceánica satelital. Estas técnicas han arrojado una nueva luz sobre una variedad de procesos de subsidencia, incluyendo tectónica, ajuste isostático, y variabilidad espacial y temporal de la compactación de los sedimentos. Ellos también confirman que la subsidencia asociada a la extracción de fluidos puede sobrepasar el promedio global de ascenso del nivel del mar por hasta dos órdenes de magnitud, lo que resulta en una elevación efectiva del nivel del mar que es cien veces más rápido que el ritmo eustático. En los próximos años, los instrumentos espacialmente basados y aerotransportados serán críticos para la prestación de monitoreo en tiempo casi real para facilitar las decisiones de gestión en el hundimiento de los deltas. Sin embargo, las observaciones terrestres siguen siendo necesarias para generar medidas completas de los cambio de la elevación de la superficie. La modelización numérica debería tratar de simular acoplamientos entre los procesos de subsidencia para un mayor poder predictivo.

评论:利用卫星方法研究三角洲沉降的新进展

摘要

世界上大多数主要三角洲相对于当地的海平面来说都在下沉。沉降的影响包括含水层盐化、基础设施的损坏、抗洪水和风暴潮的脆弱性增加以及低洼地永久被淹。因此,确定诱发三角洲沉降中的自然压力对人为压力相对重要性一直是研究的主题。本文论述了有关三角洲地表高程损失的情况。由于应用天基技术—干涉合成孔径雷达、全球定位系统和卫星海洋测量术,这方面的进展非常快。这些技术阐明了各种沉降过程,包括构造、均衡调整和沉积压实的时空变化。这些技术也证实与抽取流体相关的沉降可超过全球平均海平面上升两个数量级,致使海平面有效上升,比海面升降速度快一百倍。在未来几年,天基和机载仪器在提供近实时监测以帮助制定沉降三角洲管理决策方面显得至关重要。然而,陆基观测对于获取地表高程变化完整的测量结果仍旧是必不可少的。数值模拟应当寻求模拟沉降过程之间的耦合以得到更大的预测能力。

Revisão: Avanços na pesquisa de subsidência em deltas utulizando métodos por satélite

Resumo

A maioria dos grandes deltas de rios do mundo estão afundando em relação ao nível local do mar. Os efeitos da subsidência podem incluir salinização do aquífero, danos de infraestrutura, aumento da vulnerabilidade a inundações e tempestades, e inundação permanente de terras baixas. Por consequência, determinar a importância relativa das pressões naturais versus antropogênicas na subsidência de deltas em andamento é uma área de pesquisa em curso. Este artigo apresenta uma revisão de conhecimentos no que diz respeito à perda de elevação em superfície. O campo está avançando rapidamente devido a aplicações de técnicas espaciais: InSAR (radar de abertura sintética interferométrico), GPS (sistemas de posicionamento global) e satélite de altimetria oceânica. Estas técnicas apresentam uma nova visão sobre uma variedade de processos de subsidência, incluindo tectônica, ajuste isostático e de variabilidade espacial e temporal da compactação de sedimentos. Eles também confirmam que a subsidência associada à extração de fluído pode superar o aumento global médio do nível do mar em até duas ordens de magnitude, resultando em uma elevação efetiva do nível do mar que é cem vezes mais rápida que a taxa eustática. Nos próximos anos, os instrumentos aéreos baseados no espaço serão fundamentais para facilitar as decisões de gestão de deltas em submersão, ao fornecer um monitoramento quase instantâneo. No entanto, observações terrestres continuam a ser necessárias para a geração de medições completas de mudança na superfície de elevação. A modelagem numérica deve procurar simular acoplamentos entre processos de subsidência para aumentar o poder preditivo.

Notes

Acknowledgements

This work was supported by NASA Land-Cover/Land-Use Change (LCLUC) award “Global-scale assessment of threatened river delta systems,” NSF award 1135427 “Frontiers in Earth-System Dynamics (FESD) Type 1: A Delta Dynamics Collaboratory,” and NSF grant DGE 0707432.

References

  1. Alber M, Swenson EM, Adamowicz SC, Mendelssohn IA (2008) Salt marsh dieback: an overview of recent events in the US. Estuar Coast Shelf Sci 80(1):1–11CrossRefGoogle Scholar
  2. Allen JRL (1990) The formation of coastal peat marshes under an upward tendency of relative sea-level. J Geol Soc Lond 147:743–745CrossRefGoogle Scholar
  3. Allen JRL (1999) Geological impacts on coastal wetland landscapes: some general effects of autocompaction in the Holocene of northwestern Europe. The Holocene 9(1):1–12. doi: 10.1191/095968399674929672 CrossRefGoogle Scholar
  4. Bähr H, Hanssen RF (2012) Reliable estimation of orbit errors in spaceborne SAR interferometry: the network approach. J Geod 86(12):1147–1164. doi: 10.1007/s00190-012-0571-6 CrossRefGoogle Scholar
  5. Becker RH, Sultan M (2009) Land subsidence in the Nile Delta: inferences from radar interferometry. The Holocene 19(6):949–954CrossRefGoogle Scholar
  6. Bloom AL (1964) Peat accumulation and compaction in a Connecticut Coastal Marsh. J Sediment Res 34(3):599–603Google Scholar
  7. Bondesan M, Simeoni U (1983) Dinamica e analisi morfologica statistica del litorali del delta del Po e alle foci dell’Adige e del Brenta [Dynamics and statistical morphological analysis of the Po Delta coast and the mouths of the Adige and Brenta rivers]. Mem Soc Geol Ital 36:1–48Google Scholar
  8. Cahoon DS, Lynch JC, Perez BC, Segura B, Holland RD, Stelly C, Stephenson G, Hensel P (2002) High-precision measurements of wetland sediment elevation II: the Rod Surface Elevation Table. J Sediment Res 72(5):730–733CrossRefGoogle Scholar
  9. Cahoon DS, Hensel P, Rybczyk J, McKee KL, Proffitt CE, Perez BA (2003) Mass tree mortality leads to mangrove peat collapse at Bay islands, Honduras, after Hurricane Mitch. J Ecol 91:1093–1105CrossRefGoogle Scholar
  10. Cahoon DS, Ford MA, Hensel PF (2004) Ecogeomorphology of Spartina patens-dominated tidal marshes: soil organic matter accumulation, marsh elevation dynamics, and disturbance, vol 59. American Geophysical Union, Washington, DC, pp 247–266Google Scholar
  11. Cahoon DS, Hensel PF, Spencer T, Reed DJ, McKee KL, Saintilan N (2006) Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls, vol 190, chap 12. In: Wetlands and natural resource management. Springer, Heidelberg, Germany, pp 271–292Google Scholar
  12. Caputo M, Pieri L, Unghendoli M (1970) Geometric investigation of the subsidence in the Po Delta. Boll Geofis Teor Appl 14(47):187–207Google Scholar
  13. Chaussard E, Amelung F, Abidin H, Hong S-H (2013) Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens Environ 128:150–161. doi: 10.1016/j.rse.2012.10.015 CrossRefGoogle Scholar
  14. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change, chap 13. In: Climate change 2013: the physical science basis—contribution of Working Group I to the Fifth Assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  15. CIESIN (Center for International Earth Science Information Network) (2005) Gridded population of the world version 3 (GPWv3). Technical report, CIESIN and SEDAC, New York; CIAT, Palisades, NY. http://sedac.ciesin.columbia.edu/gpw. Accessed October 2015
  16. Coleman JM (1969) Brahmaputra River: channel processes and sedimentation. Sediment Geol 3(2/3):129–239CrossRefGoogle Scholar
  17. Corthell EL (1897) The delta of the Mississippi River. Natl Geogr Mag 8(13):351–358Google Scholar
  18. Cunningham R, Gisclair D, Craig J (2004) The Louisiana Statewide LiDAR Project. Louisiana State University, Baton Rouge, Louisiana, p 12Google Scholar
  19. Day JW, Kemp GP, Reed DJ, Cahoon DR, Boumans RM, Suhayda JM, Gambrell R (2011) Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: the role of sedimentation, autocompaction and sea-level rise. Ecol Eng 37:229–240. doi: 10.1016/j.ecoleng.2010.11.021 CrossRefGoogle Scholar
  20. Dixon TH, Amelung F, Ferretti A, Novali F, Rocca F, Dokka R, Sella G, Kim S-W, Wdowinski S, Whitman D (2006) Subsidence and flooding in New Orleans. Nature 441:587–588. doi: 10.1038/441587a CrossRefGoogle Scholar
  21. Dokka RK (2006) Modern-day tectonic subsidence in coastal Louisiana. Geology 34:281–284CrossRefGoogle Scholar
  22. Douglas BC (2001) Sea level change in the era of the recording tide gauge. In: Douglas BC, Kearney MS, Leatherman SP (eds) Sea level rise. Academic, New York, pp 37–62CrossRefGoogle Scholar
  23. Emery K, Aubrey D (1985) Glacial rebound and relative sea levels in Europe from tide-gauge records. Tectonophysics 120(3–4):239–255CrossRefGoogle Scholar
  24. Erban LE, Gorelick SM, Zebker HA (2014) Groundwater extraction, land subsidence and sea-level rise in the Mekong Delta, Vietnam. Environ Res Lett 9:084010. doi: 10.1088/1748-9326/9/8/084010 CrossRefGoogle Scholar
  25. Ericson JP, Vorosmarty CJ, Dingman SL, Ward LG, Meybeck M (2006) Effective sea-level rise and deltas: causes of change and human dimension implications. Glob Planet Chang 50:63–82. doi: 10.1016/j.gloplacha.2005.07.004 CrossRefGoogle Scholar
  26. Fan H, Huang H, Zeng T (2006) Impacts of anthropogenic activity on the recent evolution of the Huanghe (Yellow) River delta. J Coast Res 22(4):888–929. doi:  10.2112/04-0150
  27. FAO (2007) The world’s mangroves 1980–2005, Technical report FAO forestry paper 153. Food and Agriculture Organization, RomeGoogle Scholar
  28. Ferretti A, Monti-Guarnieri A, Prati C, Rocca F, Lichtenegger J (2007) InSAR principles: guidelines for SAR interferometry processing and interpretation. Technical report TM-19, European Space Agency, Noordwijk, The NetherlandsGoogle Scholar
  29. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  30. Galloway D, Jones DR, Ingebritsen SE (1999) Land subsidence in the United States, part II: drainage of organic soils. US Geol Surv Circ 1182:79–106Google Scholar
  31. Gambolati G, Putti M, Teatini P, Camporese M, Ferraris S, Gasparetto Stori G, Nicoletti V, Silvestri S, Rizzetto F, Tosi L (2005) Peat land oxidation enhances subsidence in the Venice watershed. EOS Trans Am Geophys Union 86(23):217–220. doi: 10.1029/2005EO230001 CrossRefGoogle Scholar
  32. Gambolati G, Putti M, Teatini P, Gasparetto Stori G (2006) Subsidence due to peat oxidation and its impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon. Environ Geol 49:814–820CrossRefGoogle Scholar
  33. Goodbred SL Jr, Kuehl SA, Steckler MS, Sarker MH (2003) Controls on facies distribution and stratigraphic preservation in the Ganges-Brahmaputra delta sequence. Sediment Geol 155(34):301–316CrossRefGoogle Scholar
  34. Herodotus (ca. 440 BC) The histories: Book II, G. Rawlinson, Translator, 8th printing, 1997. Knopf, New YorkGoogle Scholar
  35. Higgins S, Overeem I, Tanaka A, Syvitski JPM (2013) Land subsidence at aquaculture facilities in the Yellow River Delta, China. Geophys Res Lett 40(15):3898–3902. doi: 10.1002/grl.50758 CrossRefGoogle Scholar
  36. Higgins S, Overeem I, Steckler MS, Syvitski JPM, Akhter SH (2014) InSAR measurements of compaction and subsidence in the Ganges-Brahmaputra Delta, Bangladesh. J Geophys Res Earth Surf 119(8):1768–1781. doi: 10.1002/2014JF003117 CrossRefGoogle Scholar
  37. Hoeksema RJ (2007) Three stages in the history of land reclamation in the Netherlands. Irrig Drain 56:S113–S126. doi: 10.1002/ird.340 CrossRefGoogle Scholar
  38. Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–1514. doi: 10.5194/bg-7-1505-2010 CrossRefGoogle Scholar
  39. Hutton EWH, Syvitski JPM, Watts AB (2013) Isostatic flexure of a infinite slope due to sea-level rise and fall. Comput Geosci 53:58–68CrossRefGoogle Scholar
  40. Ibanez C, Prat N, Canicio A (1996) Changes in the hydrology and sediment transport produced by large dams on the lower Ebro River and its estuary. Regul Rivers: Res Manage 12(1):51–62Google Scholar
  41. Ingebritsen SE, Galloway DL (2014) Coastal subsidence and relative sea level rise. Environ Res Lett 9, 091002, 4 pp. doi: 10.1088/1748-9326/9/9/091002
  42. Ingebritsen SE, Ikehara ME (1999) Sacramento-San Joaquin Delta: the sinking heart of the state. In: Galloway D, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States, part II: drainage of organic soils. US Geol Surv Circ 1182:83–94Google Scholar
  43. Ivins ER, Dokka RK, Blom RG (2007) Post-glacial sediment load and subsidence in coastal Louisiana. Geophys Res Lett 34, L16303CrossRefGoogle Scholar
  44. Johansson JM, Davis JL, Scherneck H-G, Milne GA, Vermeer M (2002) Continuous GPS measurements of post-glacial adjustment in Fennoscandia, part I: geodedic results. J Geophys Res 107:2157–2184CrossRefGoogle Scholar
  45. Jouet G, Hutton EWH, Syvitski JPM, Berne S (2008) Response of the Rhone deltaic margin to loading and subsidence during the last climactic cycle. Comput Geosci 35(10):1338–1357CrossRefGoogle Scholar
  46. Krauss K, Allen JA, Cahoon DR (2003) Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar Coast Shelf Sci 56(2):251–259. doi: 10.1016/S0272-7714(02)00184-1 CrossRefGoogle Scholar
  47. Liu P, Li Q, Li Z, Hoey T, Liu Y, Wang C (2015) Land subsidence over oil fields in the Yellow River Delta. Remote Sens 7:1540–1564. doi: 10.3390/rs70201540 CrossRefGoogle Scholar
  48. Long AJ, Waller MP, Stupples P (2006) Driving mechanisms of coastal change: peat compaction and the destruction of late Holocene coastal wetlands. Mar Geol 225:63–84CrossRefGoogle Scholar
  49. Lovelock CE, Bennion V, Grinham A, Cahoon DR (2011) The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems 14:745–757CrossRefGoogle Scholar
  50. Massey AC, Paul MA, Gehrels WR, Charman DJ (2006) Autocompaction in Holocene coastal back-barrier sediments from south Devon, southwest England. Mar Geol 226:225–241CrossRefGoogle Scholar
  51. Massonnet D, Feigl K (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36:441–500. doi: 10.1029/97RG03139 CrossRefGoogle Scholar
  52. McCarthy TS, Stanistreet IG, Cairncross B, Ellery WN, Ellery K, Oelofse R, Grobicki TSA (1988) Incremental aggradation on the Okavango Delta-fan, Botswana. Geomorphology 1:267–278CrossRefGoogle Scholar
  53. McManus J (2002) Deltaic responses to changes in river regimes. Mar Chem 79:155–170CrossRefGoogle Scholar
  54. Meckel TA, ten Brink US, Williams SJ (2006) Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophys Res Lett 33, L11403CrossRefGoogle Scholar
  55. Meckel TA, Brink UST, Williams SJ (2007) Sediment compaction rates and subsidence in deltaic plains: numerical constraints and stratigraphic influences. Basin Res 19:19–31CrossRefGoogle Scholar
  56. Milne GA, Mitrovica JX (2008) Searching for eustasy in deglacial sea-level histories. Quat Sci Rev 27(2526):2292–2302. doi: 10.1016/j.quascirev.2008.08.018 CrossRefGoogle Scholar
  57. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2:471–478. doi: 10.1038/ngeo544 CrossRefGoogle Scholar
  58. Monti-Guarnieri A, Parizzi F, Pasquali P, Prati C, Rocca F (1993) SAR interferometry experiments with ERS-1. Geosci Remote Sens Symp 1993(3):991–993Google Scholar
  59. Morton RA, Bernier JC (2010) Recent subsidence-rate reductions in the Mississippi Delta and their geological implications. J Coast Res 26(3):555–561CrossRefGoogle Scholar
  60. Mueller ER, Schmidt JC, Topping DJ, Grams PE (2015) Geomorphic change in the limitrophe reach of the Colorado River in response to the 2014 delta pulse flow, United States and Mexico. In: Proceedings of the 10th Federal Interagency Sedimentation Conference and the 5th Federal Interagency Hydrologic Modeling Conference, Reno, NV, 19–23 April 2015. http://www.sedhyd.org/2015/openconf/modules/request.php?module=oc_program&action=summary.php&id=136
  61. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. doi: 10.1126/science.1185782 CrossRefGoogle Scholar
  62. Nutalaya P, Yong RN, Chumnankit T, Buapeng S (1996) Land subsidence in Bangkok during 1978–1988, chap 5. Kluwer, Dordrecht, The Netherlands, pp 105–130Google Scholar
  63. Ostanciaux E, Husson L, Choblet G, Robin C, Pedoja K (2012) Present-day trends of vertical ground motion along the coast lines. Earth Sci Rev 110:74–92CrossRefGoogle Scholar
  64. Peltier WR (1999) Global sea level rise and glacial isostatic adjustment. Glob Planet Chang 20:93–123CrossRefGoogle Scholar
  65. Rangin C, Klein M, Roques D, Pichon XL, Trong LV (1995) The Red River fault system in the Tonkin Gulf, Vietnam. Tectonophysics 243(34):209–222CrossRefGoogle Scholar
  66. Reutebuch SE, McGaughey RJ, Andersen H-E, Carson WW (2003) Accuracy of a high-resolution LiDAR terrain model under a conifer forest canopy. Can J Remote Sens 29(5):527–535CrossRefGoogle Scholar
  67. Rojstaczer SA, Hamon RE, Deverel SJ, Massey CA (1991) Evaluation of selected data to assess the causes of subsidence in the Sacramento-San Joaquin Delta, California. U.S. Geological Survey, Sacramento, p 16Google Scholar
  68. Rogers KG, Overeem I, Higgins S, Gilligan J, Syvitski JPM (2013a) Farming practices and anthropogenic delta dynamics. In: Proceedings of IAHS-IAPSO-IASPEI Assembly, IAHS Publ. Gothenburg, Sweden, p 133–142Google Scholar
  69. Rogers KG, Goodbred SL Jr, Mondal DR (2013b) Monsoon sedimentation on the ‘abandoned’ tide-influenced Ganges-Brahmaputra delta plain. Estuar Coast Shelf Sci 131:297–309CrossRefGoogle Scholar
  70. Rosen PA, Henley S, Peltzer G, Simons M (2004) Updated repeat orbit interferometry package released. EOS Trans Am Geophys Soc 85(5):47CrossRefGoogle Scholar
  71. Sanchez-Arcilla A, Jimenez JA, Valdemoro HI (1998) The Ebro Delta: morphodynamics and vulnerability. J Coast Res 14(3):754–772Google Scholar
  72. Shi C, Zhang D, You L, Li B, Zhang Z, Zhang O (2007) Land subsidence as a result of sediment consolidation in the Yellow River Delta. J Coast Res 23(1):173–181. doi: 10.2112/39951.1 Google Scholar
  73. Shi X, Fang R, Wu J, Xu H, Sun Y, Yu J (2012) Sustainable development and utilization of groundwater resources considering land subsidence in Suzhou, China. Eng Geol 124:77–89. doi: 10.1016/j.enggeo.2011.10.005 CrossRefGoogle Scholar
  74. Shu L, Finlayson B (1992) Flood management on the lower Yellow River: hydrological and geomorphological perspectives. Sediment Geol 85:285–296CrossRefGoogle Scholar
  75. Stanley J-D, Randazzo G (2001) Petrologic database to define the human-reworked, sediment-deficient plain of the Rio Grande delta, Texas. Environ Geol 41:37–53. doi: 10.1007/s002540100390 CrossRefGoogle Scholar
  76. Stanley J-D, Warne AG (1993) Nile delta: recent geological evolution and human impact. Science 260:628–634CrossRefGoogle Scholar
  77. Stanley J-D, Warne AG (1997) Holocene sea level change and early human utilization of deltas. GSA Today 7(12):1–7Google Scholar
  78. Steckler MS, Nooner SL, Akhter SH, Chowdhury SK, Bettadpur S, Seeber L, Kogan MG (2010) Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data. J Geophys Res 115, B08407. doi: 10.1029/2009JB007018
  79. Syvitski JPM (2008) Deltas at risk. Sustain Sci 3:23–32CrossRefGoogle Scholar
  80. Syvitski JPM, Kettner A (2011) Sediment flux and the Anthropocene. Philos Trans R Soc 369:957–975. doi: 10.1098/rsta.2010.0329 CrossRefGoogle Scholar
  81. Syvitski JPM, Saito Y (2007) Morphodynamics of deltas under the influence of humans. Glob Planet Chang 57:261–282. doi: 10.1016/j.gloplacha.2006.12.001 CrossRefGoogle Scholar
  82. Syvitski JPM, Kettner AJ, Correggiari A, Nelson BW (2005) Distributary channels and their impact on sediment dispersal. Mar Geol 222–223:75–94CrossRefGoogle Scholar
  83. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vorosmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–686. doi: 10.1038/ngeo629 CrossRefGoogle Scholar
  84. Teatini P, Tosi L, Strozzi T (2011) Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. J Geophys Res 116, B08407, pp 957–975. doi: 10.1029/2010JB008122 Google Scholar
  85. TeBrake WH (2002) Taming the waterwolf: hydraulic engineering and water management in the Netherlands during the Middle Ages. Technol Cult 43(3):475–499. doi: 10.1353/tech.2002.0141 CrossRefGoogle Scholar
  86. Tessler ZD, Vörösmarty CJ, Grossberg M, Gladkova I, Aizenman H, Syvitski JPM, Foufoula-Georgiou E (2015) Profiling risk and sustainability in coastal deltas of the world. Science 349(6248):638–643. doi: 10.1126/science.aab3574 CrossRefGoogle Scholar
  87. Tornqvist TE, Wallace DJ, Storms JEA, Wallinga J, Van Dam RL, Blaauw M, Derksen MS, Klerks CJW, Meijneken C, Snijders EMA (2008) Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nat Geosci 1:173–176CrossRefGoogle Scholar
  88. van Asselen S (2010) Peat compaction in deltas: implications for Holocene delta evolution, PhD Thesis, Utrecht University, The Netherlands, 180 ppGoogle Scholar
  89. van Asselen S, Stouthamer E, van Asch Th WJ (2009) Effects of peat compaction on delta evolution: a review on processes, responses, measuring and modeling. Earth Sci Rev 92(1–2):35–51. doi: 10.1016/j.earscirev.2008.11.001 CrossRefGoogle Scholar
  90. van Asselen S, Karssenberg D, Stouthamer E (2011) Contribution of peat compaction to relative sea-level rise within Holocene deltas. Geophys Res Lett 38, L24401. doi: 10.1029/2011GL04983
  91. Vorosmarty CV, Sahagian D (2000) Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50:753–765CrossRefGoogle Scholar
  92. Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Glob Planet Chang 39:111–126CrossRefGoogle Scholar
  93. Wang H, Bi N, Saito Y, Wang Y, Sun X, Zhang J (2010) Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: causes and environmental implications in its estuary. J Hydrol 391:302–313. doi: 10.1016/j.marenvres.2008.01.003 CrossRefGoogle Scholar
  94. Warren RS, Niering WA (1993) Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74(1):96–103CrossRefGoogle Scholar
  95. Whalen D, Forbes DL, Hopkinson C, Lavergne JC, Manson GK, Marsh P, Solomon SM (2009) Topographic LiDAR: providing a new perspective in the Mackenzie Delta. Canadian Remote Sensing Society, Lethbridge, AB, 6 ppGoogle Scholar
  96. Wolff WJ (1992) The end of a tradition: 1000 years of embankment and reclamation of wetlands in the Netherlands. Ambio 21(4):287–291Google Scholar
  97. Woodroffe CD, Nicholls RJ, Saito Y, Chen Z, Goodbred SL (2006) Landscape variability and the response of Asian megadeltas to environmental change, chap 10. In: Harvey N (ed) Global change and integrated coastal management: the Asia-Pacific region, coastal systems and continental margins. Springer, Dordrecht, doi: 10.1007/1-4020-3628-0 10, pp 277–314CrossRefGoogle Scholar
  98. Xing F, Kettner AJ, Ashton A, Giosan L, Ibanez C, Kaplan JO (2014) Fluvial response to climate variations and anthropogenic perturbations for the Ebro River, Spain in the last 4000 years. Sci Total Environ 473–474:20–31CrossRefGoogle Scholar
  99. Xu Y-S, Shen S-L, Cai Z-Y, Zhou G-Y (2008) The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Nat Hazards 45:123–135. doi: 10.1007/s11069-007-9168-4 CrossRefGoogle Scholar
  100. Zhang J-Z, jun Guang H, bo Bi H (2015) Land subsidence in the modern Yellow River Delta based on InSAR time series analysis. Nat Hazards 75:2385–2397. doi: 10.1007/s11069014-1434-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of Colorado BoulderBoulderUSA
  2. 2.Institute of Arctic and Alpine ResearchUniversity of Colorado BoulderBoulderUSA
  3. 3.Community Surface Dynamics Modeling System (CSDMS)University of Colorado BoulderBoulderUSA

Personalised recommendations