Advertisement

Hydrogeology Journal

, Volume 24, Issue 1, pp 159–179 | Cite as

Hydrogeological investigation of shallow aquifers in an arid data-scarce coastal region (El Daba’a, northwestern Egypt)

  • Mohamed YousifEmail author
  • Robert van Geldern
  • Olaf Bubenzer
Report

Abstract

Hydrogeological investigations in arid regions are particularly important to support sustainable development. The study area, El Daba’a in northwestern Egypt, faces scarce water resources as a result of reported climate change that particularly affects the southern Mediterranean coast and increases stress on the local groundwater reserves. This change in climate affects the area in terms of drought, over-pumping and unregulated exploration of groundwater for irrigation purposes. The hydrogeological investigation is based on a multidisciplinary data-layer analysis that includes geomorphology, geology, slope, drainage lines, soil type, structural lineaments, subsurface data, stable isotopes, and chemical analyses. The study area contains Pleistocene and middle Miocene marine limestone aquifers. Based on lithology and microfacies analysis, the middle Miocene aquifer is subdivided into two water-bearing zones. The area is affected by sets of faults and anticline folds, and these structures are associated with fractures and joints that increase permeability and facilitate the recharge of groundwater. Stable isotope data indicate that groundwater of both the Pleistocene and middle Miocene aquifers is recharged by modern precipitation. The high salinity values observed in some groundwater wells that tap both aquifers could be attributed to leaching and dissolution processes of marine salts from the aquifers’ marine limestone matrix. In addition, human activities can also contribute to an increase in groundwater salinity. A future water exploration strategy, based on the results from the multidisciplinary data-layer analysis, is proposed for the area. The derived scientific approach is transferable to other arid coastal areas with comparable conditions.

Keywords

Egypt Geographic information systems Stable isotopes Coastal aquifers Climate change 

Hydrogeologische Untersuchung flacher Grundwasserleiter in einem ariden Küstengebiet mit spärlicher Datenlage (El Daba’a, nordwestliches Ägypten)

Zusammenfassung

Für die nachhaltige Entwicklung arider Regionen sind hydrogeologische Untersuchungen von besonderer Bedeutung. Die Klimaveränderungen erhöhen besonders im südlichen Mittelmeerraum den Druck auf die lokalen Grundwasserreserven. Das Untersuchungsgebiet El Daba’a im nordwestlichen Ägypten ist daher mit knappen Wasserressourcen konfrontiert. Die dortigen Folgen der Klimaveränderung zeigen sich in Form von Dürren und einer unkontrollierten Ausbeutung und Erschließung des Grundwassers zur Bewässerung. Die hydrogeologische Untersuchung basiert auf einem multidisziplinären Ansatz, welcher Geomorphologie, Geologie, Geländeneigung, Entwässerungsläufe, Bodenarten, strukturgeologische Elemente, Untergrunddaten, stabile Isotope sowie chemische Analysen umfasst. Die Grundwasserleiter im Untersuchungsgebiet sind marine Kalksteine des Pleistozäns und des Mittelmiozäns. Basierend auf der lithologischen und mikrofaziellen Analyse kann der mittelmiozäne Grundwasserleiter in zwei wasserführende Schichten feingegliedert werden. Das Gebiet ist durch Störungssystem und Sattelstrukturen geprägt. Diese Strukturen werden von Spaten und Klüften begleitet, welche die Wasserdurchlässigkeit erhöhen und die Grundwasserneubildung verbessern. Die stabilen Isotope zeigen, dass sowohl das Grundwasser des pleistozänen als auch des mittelmiozänen Aquifers durch heutiges Regenwasser gespeist werden. Die hohen Salzgehalte, die in einigen Brunnen aus beiden Grundwasserleitern beobachtet wurden, stammen aus der Auswaschung und Lösung von Meersalz aus der marinen Kalksteinmatrix. Zusätzlich können anthropogene Einflüsse zu einem Anstieg der Salinität im Grundwasser führen. Basierend auf den Ergebnissen dieser multidisziplinären Studie wird für die Wasservorkommen der Region eine Erkundungsstrategie für die Zukunft vorgeschlagen. Der hier vorgestellte wissenschaftliche Ansatz kann auf andere aride Küstengebiete mit vergleichbaren Bedingungen übertragen werden.

Investigation hydrogéologique d’aquifères peu profonds dans une région aride et côtière avec peu de données (El Daba’a, Nord-Ouest de l’Egypte)

Résumé

Les investigations hydrogéologiques en régions arides sont particulièrement importantes pour soutenir le développement durable. La région d’étude, El Daba’a dans le Nord-Ouest de l’Egypte fait face à la rareté des ressources en eau résultant du changement climatique rapporté qui affecte particulièrement la côte méridionale de la Méditerranée et d’une augmentation de la pression sur les réserves d’eau souterraines à l’échelle locale. Ce changement climatique affecte la région en termes de sécheresse, de surexploitation des eaux souterraines ainsi que de leur exploitation non régulée pour des besoins en irrigation. L’investigation hydrogéologique est basée sur une analyse multidisciplinaire de couches de données, qui comprennent la géomorphologie, la géologie, la pente, les lignes de drainage, le type de sol, les linéanments structurels, les données du sous-sol, les isotopes stables, et les analyses chimiques. La zone d’étude comprend les aquifères calcaires marins du Pléistocène et du Miocène moyen. A partir de l’analyse de la lithologie et des microfaciès, l’aquifère du Miocène moyen est subdivisé en deux zones qui renferment de l’eau. La zone est affectée par des ensembles de failles et de plis anticlinaux, et ces structures sont associées à des fractures et des joints qui augmentent la conductivité hydraulique et facilitent la recharge des aquifères. Les données des isotopes stables indiquent que les eaux souterraines des aquifères du Pléistocène et du Miocène moyen sont rechargées par les précipitations modernes. Les valeurs de forte salinité observées dans certains forages qui interceptent les deux aquifères pourraient être attribuées à l’infiltration et à des processus de dissolution des sels marins à partir de la matrice carbonatée marine des aquifères. De plus, les activités anthropiques peuvent aussi contribuer à l’augmentation de la salinité des eaux souterraines. Une stratégie d’exploitation de l’eau dans le futur, basée sur les résultats de l’analyse multidisciplinaire des couches de données, est proposée pour cette région. L’approche scientifique utilisée peut être appliquée à d’autres régions côtières arides pour des conditions comparables.

Investigación hidrogeológica de los acuíferos someros en una región costera árida con escasos datos (El Daba'a, noroeste de Egipto)

Resumen

Las investigaciones hidrogeológicas en las regiones áridas son particularmente importantes para apoyar un desarrollo sostenible. El área de estudio, El Daba'a en el noroeste de Egipto, se enfrenta a una escasez de agua como consecuencia del cambio climático que afecta en particular a la costa sur del Mediterráneo y aumenta la presión sobre las reservas locales de aguas subterráneas. Este cambio en el clima afecta a la zona en términos de sequía, excesivo bombeo y explotación no regulada de las aguas subterráneas para el riego. La investigación hidrogeológica se basa en un análisis multidisciplinario con capas de datos que incluye geomorfología, geología, pendiente, líneas de drenaje, tipos de suelos, lineamientos estructurales, datos del subsuelo, isótopos estables, y análisis químicos. El área de estudio contiene acuíferos calcáreos del Pleistoceno y del Mioceno medio marino. Sobre la base de la litología y análisis microfacies, el acuífero del Mioceno medio se subdivide en dos zonas acuíferas. La zona está afectada por conjuntos de fallas y pliegues anticlinales, y estas estructuras están asociadas con fracturas y diaclasas que aumentan la permeabilidad y facilitan la recarga de las aguas subterráneas. Los datos de isótopos estables indican que las aguas subterráneas, tanto de los acuíferos Pleistoceno como del Mioceno medio se recargan por precipitaciones actuales. Los altos valores de salinidad observados en algunos pozos de agua subterránea que aprovechan ambos acuíferos podrían atribuirse a la lixiviación y la disolución procesos de sales marinas en la matriz de la caliza marina de los acuíferos. Además, las actividades humanas también pueden contribuir a un aumento de la salinidad del agua subterránea. Se propone una estrategia de exploración futura del agua para la zona, basándose en los resultados del análisis multidisciplinarios de capas de datos. El enfoque científico derivado es transferible a otras zonas costeras áridas con condiciones comparables.

(埃及西北部El Daba’a)资料缺乏的干旱沿海区浅层含水层水文地质调查

摘要

干旱区的水文地质调查对于可持续发展十分重要。研究区在埃及西北部的El Daba’a,由于气候变化面临着水资源缺乏,气候变化尤其影响地中海南部海岸并且增加了当地地下水储存量的压力。气候变化造成该地区干旱、用于灌溉目的的地下水超采和不加限制的开发。水文地质调查基于多学科的数据层次分析,包括地貌、地质、边坡、排水管线、土壤类型、结构轮廓、地下数据、稳定同位素以及化学分析。研究区包括更新世和中中新世的海相灰岩含水层。基于岩性和沉积微相分析,中中新世含水层细分为两个含水带。这一区域受到一系列断层和背斜褶皱的影响,这些构造与增加渗透率和促进地下水补给的断裂和节理相关联。稳定同位素数据表明,更新世和中中新世含水层中地下水由现代降雨补给。在一些贯穿两个含水层的地下水井中发现具有很高的盐度值,这可以归因于海相石灰岩基质含水层中海盐的浸出和溶解过程。另外,人类的活动也会增加地下水盐度。根据多学科数据层次分析的结果,本文提出了这一地区未来水发展战略。推断出的科学方法还可用于类似其他干旱沿海地区。

Investigação hidrogeológica de aquíferos freáticos em uma região árida costeira com restrição de dados (El Daba’a, nordeste do Egito)

Resumo

Em regiões áridas, investigações hidrogeológicas são particularmente importantes como suporte ao desenvolvimento sustentável. Na região de El Daba’a, nordeste do Egito, enfrenta-se escassez de recursos hídricos devido a fenômenos de mudanças climáticas já relatados, os quais afetam particularmente a costa sul do Mediterrâneo e por sua vez, aumentam o estresse sobre as reservas de águas subterrâneas locais. As mudanças climáticas interferem na área provocando secas, superexplotação e exploração irregular das águas subterrâneas para atividades de irrigação. A investigação hidrogeológica é constituída de uma análise de dados multidisciplinares que incluem geomorfologia, geologia, topografia, rede de drenagem, pedologia, lineamentos estruturais, dados de subsuperfície, isótopos estáveis e análises químicas. A área de estudo contém aquíferos formados por sedimentos calcários marinhos do Pleistoceno e médio Mioceno. Com base na litologia e nas análises mineralógica, o aquífero do médio Mioceno é subdividido em duas zonas permeáveis. A área é afetada por grupos de falhas e anticlíneos, cujas estruturas estão associadas a fraturas e confluências que aumentam a permeabilidade e facilitam a recarga do aquífero. Os dados de isótopos estáveis indicam que as águas subterrâneas de ambos aquíferos, do Pleistoceno e do médio Mioceno, são recarregadas por precipitações modernas. Os valores elevados de salinidade observados em determinados poços de bombeamento de ambos os aquíferos são atribuídos a processos de percolação e dissolução de sais marinhos da matriz carbonácea marinha da região aquífera costeira. Ademais, a atividade humana pode também estar contribuindo para um aumento de salinidade no aquífero. Propõe-se, finalmente, neste trabalho, uma estratégia de uso de águas subterrâneas baseada em resultados de análise de dados multidisciplinares para a área. A abordagem aqui utilizada é transferível para outras regiões áridas costeiras com condições comparáveis.

Notes

Acknowledgements

The authors are thankful to the STDF (The Science and Technology Development Fund, Ministry for Scientific Research, Cairo, Egypt) for funding the scientific project entitled An integrated approach for water resources development in El Daba’a area, ID.6124 under the short-term fellowship program. This funding enabled M.Y. to carry out the research at Cologne University, Germany, where this manuscript was prepared. We thank Silke Meyer (FAU) for her help with stable isotope analyses.

Supplementary material

10040_2015_1308_MOESM1_ESM.pdf (486 kb)
ESM 1 (PDF 485 kb)

References

  1. Al Faitouri M, Sanford WE (2015) Stable and radio-isotope analysis to determine recharge timing and paleoclimate of sandstone aquifers in central and southeast Libya. Hydrogeol J. doi: 10.1007/s10040-015-1232-7 Google Scholar
  2. Ali A, Oweis T, Rashid M, El Naggar S, Abdul Al A (2007) Water harvesting options in the drylands at different spatial scales. Land Use Water Resour Res 7:1–13Google Scholar
  3. ASRT (Academy of Scientific Research and Technology) (1987) Soil map of the northwestern coast of Egypt, Sheets nos. 1-A and 2-B, scale 1: 100000, ASRT, Cairo, EgyptGoogle Scholar
  4. Awad M, Hammad F, Aly A, Sadek M (1994) Use of environmental isotopes and hydrochemistry as indicators for the of groundwater resources in El-Dabaa area, northwestern coastal zone of Egypt. Environ Geochem Health 16:31–38CrossRefGoogle Scholar
  5. Bolten A, Bubenzer O (2006) New elevation data (SRTM/ASTER) for geomorphological and geoarchaeological research in arid regions. Z Geomorphol NF 142:265–279Google Scholar
  6. Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T (2014) Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl Chem 86:263–467CrossRefGoogle Scholar
  7. Conoco (1986) Geological map of Egypt, scale 1:500,000 GPC, sheets no. NH35NE, Conoco, AlexandriaGoogle Scholar
  8. Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560CrossRefGoogle Scholar
  9. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  10. Darling WG (2011) The isotope hydrology of Quaternary climate change. J Hum Evol 60:417–427. doi: 10.1016/j.jhevol.2010.05.006 CrossRefGoogle Scholar
  11. ECMWF (European Centre for Medium-Range Weather Forecast) (2010) El Daba’a field-monthly met-ocean data. http://www.stateoil.com/en/EnvironmentSociety/Environment/impactassessmentsinternational/Downloads/EIA%20Study.pdf. Accessed 15 October 2014
  12. El Bakri A, Tantaw M, Hamza MS, Awad MA (1996) Estimation of groundwater inflow to irrigation drains in Minia, Upper Egypt, based on deuterium and oxygen-18 evaporation pan technique. Hydrol Sci J 41(1):41–48CrossRefGoogle Scholar
  13. El Shamy I (1968) The geology of soil and water resources in El Daba’a area, MSc Thesis, Cairo Univ., EgyptGoogle Scholar
  14. El Shazly EM, Abdel Hady M, El Ghawaby M, Salman A, El Kassas I et al (1981) New geological structural lineaments and drainage maps of Egypt, based on Landsat imagery interpretation and field investigations. International Symposium on Remote Sensing of Environments, Cairo, Egypt, June 1981Google Scholar
  15. Elewa HH, Qaddah AA (2011) Groundwater potentiality mapping in the Sinai Peninsula Egypt, using remote sensing and GIS watershed-based modeling. Hydrogeol J 19:613–628CrossRefGoogle Scholar
  16. El-Raey M, Dewidar KR, El-Hattab M (1998) Adaptation to the impacts of sea level rise in Egypt. Mitig Adapt Strateg Glob Chang 4:343–361CrossRefGoogle Scholar
  17. ERA (European Reanalysis Interim) (2014) European Centre for Medium-Range Weather Forecasts, Climate Reanalyzer, Climate Change Institute, University of Maine, Orono, ME, USA. http://cci-reanalyzer.org. Accessed 15 October 2014
  18. Flügel E (1982) Microfacies analysis of limestone. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  19. Foody G, Ghoneim E, Arnell N (2004) Predicting locations sensitive to flash flooding in an arid environment. J Hydrol 292:48–58CrossRefGoogle Scholar
  20. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  21. Ghoneim E, El-Baz F (2007) Dem-optical-radar data integration for paleo-hydrological mapping in the northern Darfur, Sudan: implication for groundwater exploration. Int J Remote Sens 28(22):5001–5018CrossRefGoogle Scholar
  22. Hem JD (1989) Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol SurvWater Suppl Pa 2254, 264 pp. Available online at http://pubs.usgs.gov/wsp/wsp2254/. Accessed 28 June 2015
  23. Horton RE (1945) Erosional development of stream and their drainage basins. Geol Soc Am Bull 56:275–330CrossRefGoogle Scholar
  24. IAEA (International Atomic Energy Agency) (1973) Environmental isotope data, no. 5: world surveyof isotope concentration in precipitation. Tech. Rep. Ser. no. 169, IAEA, Vienna Google Scholar
  25. IAEA (International Atomic Energy Agency) (2004) Isotope hydrology information system: the ISOHIS database. http://isohis.iaea.org/. Accesseded 1 September 2014
  26. ICARDA (International Center for Agricultural Research in the Dry Areas) (2010) Map of West Asia and Egypt, Absolute change of annual aridity index 2010–2040/current climate. http://geoagro.icarda.org/en/cms/metadata/index/563/West%25252BAsia%25252Band%25252BEgypt.%25252BAbsolute%25252Bchange%25252Bof%25252Bannual%25252Baridity%25252Bindex%25252B2010-2040%25252F%25252Bcurrent%25252Bclimate. Accessed 1 October 2014
  27. IDSC (Information and Decision Support Center) (2010) Census Survey for Matrouh Governorate, El Daba’a area. Egyptian Cabinet, CairoGoogle Scholar
  28. Issar A (1985) Fossil water under the Sinai-Negev Peninsula. Sci Am 253:104–110CrossRefGoogle Scholar
  29. IPPC (Intergovernmental Panel on Climate Change) (2014) Climate change: impacts, adaptation and vulnerability. Fifth Assessment report (AR5). http://www.ipcc.ch/. Accessed 15 October 2014
  30. Jiráková H, Huneau F, Celle-Jeanton H, Hrkal Z, Le Coustumer P (2011) Insights into palaeorecharge conditions for European deep aquifers. Hydrogeol J 19:1545–1562CrossRefGoogle Scholar
  31. Krishnamurthy J, Venkatesa KN, Jayaraman V, Manivel M (1996) An approach to demarcate ground water potential zones through remote sensing and a geographical information system. Int J Remote Sens 7(10):1867–1884CrossRefGoogle Scholar
  32. Lee S, Kim YS, Oh HJ (2012) Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J Environ Manag 96:91–105CrossRefGoogle Scholar
  33. Martínez DE, Bocanegra EM (2002) Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata. Argentina. Hydrogeol J 10:393–408Google Scholar
  34. NCAR (NOAA Climate Prediction Center, Reanalysis Versions 1 and 2) (2014) Climate reanalyzer. Climate Change Institute, University of Maine, Orono, ME, USA. http://cci-reanalyzer.org. Accessed 1 November 2014
  35. Négrel P, Petelet-Giraud E (2011) Isotopes in groundwater as indicators of climate changes. TrAC Trend Anal Chem 30:1279–1290. doi: 10.1016/j.trac.2011.06.001 CrossRefGoogle Scholar
  36. Palmer CC (1911) The geochemical interpretation of water analysis. US Geol Surv Bull 479:4–31Google Scholar
  37. Patterson LJ, Sturchio NC, Kennedy BM, van Soest MC, Sultan M, Lu Z-T, Lehmann B, Purtschert R, El Alfy Z, El Kaliouby B, Dawood Y, Abdallah A (2005) Cosmogenic, radiogenic, and stable isotopic constraints on groundwater residence time in the Nubian Aquifer, Western Desert of Egypt. Geochem Geophys Geosyst 6:Q01005 doi: 10.1029/2004GC000779Piper
  38. Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Trans Am Geophys Union 25 (6):914–923Google Scholar
  39. Pitzer KS (1973) Thermodynamics of electrolytes: I, theoretical basis and general equations. J Phys Chem 77:268–277Google Scholar
  40. Pitzer KS (1975) Thermodynamics of electrolytes: V, effects of higher-order electrostatic terms. J Solut Chem 4:249–265CrossRefGoogle Scholar
  41. Pitzer KS, Kim JJ (1974) Thermodynamics of electrolytes: IV, activity and osmotic coefficients for mixed electrolytes. J Am Chem Soc 96:5701–5707CrossRefGoogle Scholar
  42. Pitzer KS, Mayorga G (1974) Thermodynamics of electrolytes: III, activity and osmotic coefficients for 2–2 electrolytes. J Solut Chem 3:539–546CrossRefGoogle Scholar
  43. Plummer LN (1992) Geochemical modeling: past, present, future. In: Kharaka, Y, Maest, AS (eds) Proceedings of the 7th International Symposium on Water–Rock Interaction, Park City, UT, July 9–23, 1992, Balkema, Rotterdam, The NetherlandsGoogle Scholar
  44. Salas JD, Rajagopalan B, Saito L, Brown C (2012) Special section on climate change and water resources: climate nonstationarity and water resources management. J Water Resour Plan Manag 138:385–388CrossRefGoogle Scholar
  45. Schoeller H (1962) Les eaux souterraines [Groundwater]. Massio et Cie, ParisGoogle Scholar
  46. Shata A (1955) An introductory note on the geology of the northern portion of the western desert of Egypt. Bull Inst Desert 5(2):96–106Google Scholar
  47. Singh PK, Suyash K, Singh UC (2011) Groundwater resource evaluation in the Gwalior area India, using satellite data: an integrated geomorphological and geophysical approach. Hydrogeol J. doi: 10.1007/s10040-011-0758-6 Google Scholar
  48. Sultan M, Yan E, Sturchio N, Wagdy A et al (2007) Natural discharge: a key to sustainable utilization of fossil groundwater. J Hydrol 335:25–36CrossRefGoogle Scholar
  49. Tihansky B, Knochenmus LA (2001) Karst features and hydrogeology in west-central Florida: a field perspective. US Geol Surv Water-Resour Invest Rep 01-4011:198–211Google Scholar
  50. UNEP (2012) Annual report. http://www.unep.org/annualreport/2012/. Accessed 1 November 2014
  51. UNESCO (1977) Climatic zonation of the arid and semi-arid regions. In: Reij C, Mulder P, Begemann L (eds) Water harvesting for plant production. Technical paper 91. The World Bank, Washington, DCGoogle Scholar
  52. Unsal B, Yagbasan O, Yazicigil H (2014) Assessing the impacts of climate change on sustainable management of coastal aquifers. Environ Earth Sci 72:2183–2193CrossRefGoogle Scholar
  53. van Geldern R, Barth JAC (2012) Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS). Limnol Oceanogr Methods 10:1024–1036. doi: 10.4319/lom.2012.10.1024 CrossRefGoogle Scholar
  54. van Geldern R, Hayashi T, Böttcher ME, Mottl MJ, Barth JAC, Stadler S (2013) Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: methane formation and fluid origin. Geosphere 9:96–112. doi: 10.1130/GES00859.1 CrossRefGoogle Scholar
  55. van Geldern R, Baier A, Subert HL, Kowol S, Balk L, Barth JAC (2014) Pleistocene paleo-groundwater as a pristine fresh water resource: evidence from stable and radiogenic isotopes. Sci Total Environ 496:107–115. doi: 10.1016/j.scitotenv.2014.07.011 CrossRefGoogle Scholar
  56. Vengosh A, Hening S, Ganor J, Mayer B, Weyhenmeyer CE, Bullen TD, Paytan A (2007) New isotopic evidence for the origin of groundwater from the Nubian Sandstone Aquifer in the Negev, Israel. Appl Geochem 22:1052–1073. doi: 10.1016/j.apgeochem.2007.01.005 CrossRefGoogle Scholar
  57. Voss CI, Soliman SM (2014) The transboundary non-renewable Nubian Aquifer System of Chad Egypt, Libya and Sudan: classical groundwater questions and parsimonious hydrogeologic analysis and modeling. Hydrogeol J 22:441–468CrossRefGoogle Scholar
  58. Wilson JL (1975) Carbonate facies in geologic history. Springer, BerlinCrossRefGoogle Scholar
  59. Yazicigil H, Yilmaz KK, Unsal-Erdemli B, Yagbasan O (2011) Impacts of decreasing recharge rates on sustainable groundwater management. In: Baba A, Tayfur G, Gündüz O, Howard KWF, Friedel MJ, Chambel A (eds) Issues of national and global security series: NATO science for peace and security series C—environmental security, 1st edn. Springer, Dordrecht, The NetherlandsGoogle Scholar
  60. Yeh HF, Lee CH, Hsu KC, Chang PH (2009) GIS for the assessment of the groundwater recharge potential zone. Environ Geol 58:185–195CrossRefGoogle Scholar
  61. Yousif M (2014) Integration of the geomorphologic and geologic studies for water potentialities development in El Zarraqa and El Harraqa basins East Matrouh, northwestern coast, Egypt. Arab J Geosci. doi: 10.1007/s12517-014-1522-8 Google Scholar
  62. Yousif M, Bubenzer O (2013a) An integrated approach for groundwater assessment at the Northwestern Coast of Egypt (Ras El Hekma area): case study. Environ Earth Sci 69(7):2227–2246CrossRefGoogle Scholar
  63. Yousif M, Bubenzer O (2013b) Integrated remote sensing and GIS for surface water development case study: Ras El Hekma area, northwestern coast of Egypt. Arab J Geosci 6(4):1295–1306CrossRefGoogle Scholar
  64. Yousif M, Oguchi T, Anazawa K, Ohba T (2014) Geospatial information and environmental isotopes for hydrogeological evaluation: Ras Alam El Rum northwestern coast of Egypt. Nat Resour Res 23:423–445. doi: 10.1007/s11053-014-9252-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mohamed Yousif
    • 1
    Email author
  • Robert van Geldern
    • 2
  • Olaf Bubenzer
    • 3
  1. 1.Geology DepartmentDesert Research CenterCairoEgypt
  2. 2.GeoZentrum Nordbayern, Department of Geography and GeosciencesFriedrich-Alexander University Erlangen-NurembergErlangenGermany
  3. 3.Institute of GeographyUniversity of CologneCologneGermany

Personalised recommendations