Advertisement

Hydrogeology Journal

, Volume 23, Issue 8, pp 1781–1797 | Cite as

Hydrogeochemical analysis and evaluation of groundwater in the reclaimed small basin of Abu Mina, Egypt

  • Zenhom E. SalemEmail author
  • Mohamed G. Atwia
  • Mohamed M. El-Horiny
Report

Abstract

Agricultural reclamation activities during the last few decades in the Western Nile Delta have led to great changes in the groundwater levels and quality. In Egypt, changing the desert land into agricultural land has been done using transferred Nile water (through irrigation canal systems) or/and groundwater. This research investigates the hydrogeochemical changes accompanying the reclamation processes in the small basin of Abu Mina, which is part of the Western Nile Delta region. In summer 2008, 23 groundwater samples were collected and groundwater levels were measured in 40 observation wells. Comparing the groundwater data of the pre-reclamation (1974) and the post-reclamation (2008) periods, groundwater seems to have been subjected to many changes: rise in water level, modification of the flow system, improvement of water quality, and addition of new salts through dissolution processes. Generally, Abu Mina basin is subdivided into two areas, recharge and discharge. The dissolution and mixing were recognized in the recharge areas, while the groundwater of the discharge region carries the signature of the diluted pre-reclamation groundwater. The salts of soil and aquifer deposits play an important role in the salt content of the post and pre-reclamation groundwater. NaCl was the predominant water type in the pre-reclamation groundwater, while CaSO4, NaCl and MgSO4 are the common chemical facies in the post-reclamation groundwater. The post-reclamation groundwater mostly indicates mixing between the pre-reclamation groundwater and the infiltrated freshwater with addition of some ions due to interaction with soil and sediments.

Keywords

Egypt Groundwater monitoring Hydrochemistry Spatio-temporal change Soil salinity 

Analyse hydrogéochimique et évaluation des eaux souterraines dans le petit bassin réhabilité d’Abu Mina en Egypte

Résumé

Les activités d’habilitation agricole au cours des dernières décennies dans la partie occidentale du Delta du Nile ont amené à d’importants changements des niveaux et de la qualité des eaux souterraines. En Egypte, l’habilitation de terres désertiques en terres agricoles a été réalisée en transférant les eaux du Nil (via un système de canaux d’irrigation). La présente étude se propose d’étudier les changements hydrogéochimiques accompagnant les processus d’habilitation de terres désertiques en terres agricoles dans le petit bassin d’Abu Mina situé dans la région ouest du delta du Nil. Durant l’été 2008, 23 échantillons d’eau souterraine ont été collectés et les niveaux piézométriques mesurés dans 40 forages d’observation. En comparant les données sur les eaux souterraines collectées avant (1974) et après (2008) l’habilitation des terres, les eaux souterraines semblent être sensibles à plusieurs changements ; augmentation du niveau d’eau, modification du système d’écoulements, amélioration de la qualité de l’eau et addition de nouveaux sels par processus de dissolution. En règle générale, le bassin d’Abu Mina est divisé en deux parties, avec une zone de recharge et une zone de décharge. Des processus de dissolution et de mélange ont été reconnus dans les aires de recharge alors que les eaux souterraines des secteurs de décharge ont la signature des eaux souterraines diluées avant l’habilitation des terres désertiques en terres agricoles. Les sels des dépôts des sols et des aquifères jouent un rôle important sur la teneur en sels des eaux souterraines post et pré-habilitation des terres. NaCl est le type d’eau prédominant dans les eaux souterraines pré-habilitation des terres, alors que CaSO4, NaCl et MgSO4 sont des faciès communs des eaux souterraines post-habilitation des terres. Les eaux souterraines post-habilitation des terres indiquent principalement un mélange entre les eaux souterraines pré-habilitation des terres et les eaux d’infiltration récentes ayant un supplément d’ions dû aux interactions avec les sols et sédiments.

Análisis y evaluación hidrogeoquímica de las aguas subterráneas en la pequeña cuenca recuperada de Abu Mina, Egipto

Resumen

Las actividades de recuperación agrícola durante las últimas décadas en el delta del Nilo Occidental han dado lugar a grandes cambios en los niveles y la calidad del agua subterránea. En Egipto, el cambio del terreno desértico en tierra agrícola que se ha hecho utilizando agua transferida del Nilo (a través de los sistemas de canales de riego) y / o aguas subterráneas. Esta investigación estudia los cambios hidrogeoquímicas que acompañaron los procesos de recuperación en la pequeña cuenca de Abu Mina, que es parte de la región occidental del Delta del Nilo. En el verano de 2008, se recolectaron 23 muestras de agua subterránea y los niveles de agua subterránea se midieron en 40 pozos de observación. Comparando los datos de agua subterránea de los períodos de la pre-recuperación (1974) y del posterior a la recuperación (2008), el agua subterránea parece haber estado sometida a muchos cambios: el ascenso del nivel del agua, la modificación del sistema de flujo, la mejora de la calidad del agua, y la adición de nuevas sales a través de los procesos de disolución. Generalmente, la cuenca de Abu Mina se subdivide en dos zonas, la de recarga y la de descarga. Se reconocieron procesos de disolución y la mezcla en las áreas de recarga, mientras que el agua subterránea en la región de descarga lleva la marca del agua subterránea diluida de la pre-recuperación. Las sales de los depósitos del suelo y de los acuíferos desempeñan un papel importante en el contenido de sal del agua subterránea pre y post-recuperación. El NaCl fue el tipo predominante en el agua subterránea antes de la recuperación, mientras que CaSO4, NaCl y MgSO4 son las facies químicas comunes en el agua subterránea después de la recuperación. El agua subterránea de la post-recuperación indica principalmente una mezcla el agua subterránea pre-recuperación y el agua dulce infiltrada con adición de algunos iones debido a la interacción con el suelo y los sedimentos.

埃及一个小的开垦流域--阿布迈那流域中地下水水文地球化学分析和评价

摘要

过去几十年尼罗河三角洲西部的农业开垦活动致使地下水位和地下水质发生了很大变化。在埃及,一直通过(灌溉渠道)输送尼罗河水或/及地下水把沙漠变成农田。本研究调查了尼罗河三角洲西部阿布迈那流域的水文地球变化及开垦过程。2008年夏天,采集了23个地下水样,测量了40口观测井的地下水位。比较(1974年)开垦前地下水资料和(2008年)开垦后地下水资料后发现,地下水似乎经历 了许多变化:水位上升、水流系统的改变,水质的改善及溶解过程中新盐分的增加。一般来说,-阿布迈那流域分为两个区域,补给区和排泄区。发现补给区有溶解和混合现象,而排泄区的地下水为稀释的开垦前的地下水。土壤和含水层沉积层的盐分在开垦后和开垦前地下水中的盐分含量上发挥着重要作用。NaCl是开垦的前地下水中的主要水类型,而CaSO4、NaCl和 MgSO4是开垦后地下水中常见的化学相。开垦后地下水主要表明,开垦前地下水和入渗的淡水之间发生混合,并由于入渗的淡水和与土壤和沉积层互相反应增加了一些例离子。

Análise hidrogeoquímica e avalição das águas subterrâneas na pequena bacia recuperada de Abu Mina, Egito

Resumo

Atividades de recuperação de áreas agrícolas durante as últimas décadas no Delta Oeste do Nilo levaram a grandes mudanças nos níveis e na qualidade das águas subterrâneas. No Egito, a mudança de deserto a terra agriculturável foi realizada usando água transferida do Nilo (através de sistemas de canais de irrigação) e/ou águas subterrâneas. Esta pesquisa investiga as mudanças hidrogeoquímicas que acompanham os processos de recuperação na pequena bacia de Abu Mina, que é parte da região do Delta Oeste do Nilo. No verão de 2008, 23 amostras de águas subterrâneas foram coletadas e níveis de águas subterrâneas foram medidos em 40 poços de observação. Comparando os dados de águas subterrâneas do período anterior à recuperação (1974) e após a recuperação (2008), a água subterrânea parece ter sido submetida à várias mudanças: aumento do nível da água, modificação do sistema de escoamento, melhora da qualidade da água e adição de novos sais, através de processos de dissolução. De forma geral, a bacia de Abu Mina é subdividida em duas áreas, recarga e descarga. A dissolução e mistura foram reconhecidas em áreas de recarga, enquanto as águas subterrâneas da região de descarga tem a assinatura de águas subterrâneas anteriores à recuperação, diluída. Os sais no solo e dos depósitos do aquífero têm um papel importante no conteúdo de sal da água anterior e posterior à recuperação. NaCl foi o tipo predominante de água nas águas subterrâneas anteriores à recuperação, enquanto CaSO4, NaCl e MgSO4 são os compostos químicos mais comuns nas água subterrâneas após recuperação. As águas subterrâneas após a recuperação majoritariamente indicam a mistura entre águas subterrâneas anteriores à recuperação e as águas infiltradas com adição de alguns íons, devido à interação com o solo e sedimentos.

Notes

Acknowledgements

The 2008 groundwater data were taken from the master’s thesis of the third author. The authors are thankful to Tanta University, Egypt, for their financial support during the field and laboratory work. The authors are grateful to the associate editor of Hydrogeology Journal and two anonymous reviewers for their constructive remarks, which lead to improvement in the quality of this paper.

References

  1. Abdel Daiem AA (1976) Melioration hydrogeology in west El-Nubaria area. PhD Thesis, Mansoura University, EgyptGoogle Scholar
  2. Abdel Mogheeth SM (1968) Hydrogeochemical studies of Bur El-Arab and vicinities. MSc Thesis, Ain Shams University, EgyptGoogle Scholar
  3. Ahmed ASA (2002) Environmental impacts of development on the hydrogeology and hydrochemistry, West Nile Delta, Egypt. PhD Thesis, Cairo University, EgyptGoogle Scholar
  4. Allison GB, Cook PG, Barnett SR (1990) Land clearance and river salinization in the western Murray Basin, Australia. J Hydrol 119:1–20CrossRefGoogle Scholar
  5. Bayumy DA (2014) Sedimentological and hydrological studies on the area west of the Nile Delta, Egypt. MSc Thesis, Tanta University, EgyptGoogle Scholar
  6. Bromley J, Cruces J, Acreman M, Martinez L, Llamas MR (2001) Problems of sustainable groundwater management in an area of over exploitation: the upper Guadiana catchment, central Spain. Int J Water Resour Dev 17:379–396CrossRefGoogle Scholar
  7. CEDARE (2009) Assessment of groundwater potential in Alexandria Governorate. CEDARE, CairoGoogle Scholar
  8. Cook PG, Leaney FW, Jolly ID (2001) Groundwater recharge in the Mallee Region, and salinity implications for the Murray River: a review. CSIRO Land and Water technical report 45, CSIRO, Clayton, Australia, 133 ppGoogle Scholar
  9. Daughney CJ, Reeves RR (2005) Definition of hydrochemical facies in the New Zealand National Groundwater Monitoring Programme. J Hydrol (New Zealand) 44:105–130Google Scholar
  10. Dregne HE (1991) Global status of desertification. Ann Arid Zone 30:179–185Google Scholar
  11. Edet AE, Okereke CS (2001) A regional study of saltwater intrusion in southeastern Nigeria based on the analysis of geoelectrical and hydrochemical data. Environ Geol 40:1278–1289Google Scholar
  12. Egyptian Meteorological Authority (EMA) (1994) Climatic records of Egypt. Annual reports (1959/1994), EMA, CairoGoogle Scholar
  13. El-Horiny M (2012) Geoelectrical and hydrogeological studies on Burg El-Arab area and its adjacent areas North Western Coast of Egypt. MSc Dissertation, Tanta University, EgyptGoogle Scholar
  14. Erian WF, Yacoub RK (2000) The use of the ordinary kriging techniques in measuring the sustainability in sugar beet area, Nubariya, Egypt. Int Archives Photogramm Remote Sensing XXXIII (B7):405–419Google Scholar
  15. Fekry AM (2004) Assessment of impacts of groundwater developments in the west Nile Delta region, Proceedings of the 3rd ISG, Tanta, Egypt, December 2003, pp 262–270Google Scholar
  16. Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the North China plain: assessing and achieving groundwater resource sustainability. Hydrogeology J 12:81–93CrossRefGoogle Scholar
  17. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 17:1088–1090CrossRefGoogle Scholar
  18. Gǜler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology J 10:455–474CrossRefGoogle Scholar
  19. Keren R, Kreit JF, Shainberg I (1980) Influence of size of gypsum particles on the hydraulic conductivity of soils. Soil Sci 130:113–117CrossRefGoogle Scholar
  20. Le Maitre DC, Scott DF, Colvin C (1999) A review of information on interactions between vegetation and groundwater. Water 25:137–152Google Scholar
  21. Liu CM, Xia J (2004) Water problems and hydrological research in the Yellow River and the Huai and Hai River basins of China. Hydrol Processes 18:2197–2210CrossRefGoogle Scholar
  22. McFarlane DJ, George RJ (1992) Factors affecting dryland salinity on two wheat belt catchments in Western Australia. Aust J Soil Res 30:85–100CrossRefGoogle Scholar
  23. Menció A, Mas-Pla J (2008) Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. J Hydrol 352:355–366CrossRefGoogle Scholar
  24. Mohamed SS, Abd Allatif T, Khalil S (1979) Electrical resistivity investigations in clarifying the subsurface geological sequences and groundwater conditions of Abu Mina basin (northwestern coastal zone, Egypt). In: The hydrology of areas of low precipitation, Proceedings of the Canberra Symposium, December 1979. IAHS publ. 128, IAHS, Wallingford, UK, pp 349–354Google Scholar
  25. Mousli OF (1980) Methods of evaluation and classification of gypsiferous soils and suitability for irrigated agriculture. In: Beinroth FH, Osman A (eds) Proceedings of the 3rd International Soil Classification Workshop. The Arab Center for Studies of the Arid Zones and Dry Lands (ACSAD), Damascus, Syria, pp 278–307Google Scholar
  26. Moustafa AM, Ismail HA, El-Menshawy AB, Soliman WA (2005) Current and predicted land evaluation using integrated GIS and modeling tools at El-Bangar area, Egypt. Minufiy J Agric Res 30:365–385Google Scholar
  27. O’Shea B, Jankowski J (2006) Detecting subtle hydrochemical anomalies with multivariate statistics: an example from ‘homogeneous’ groundwaters in the Great Artesian Basin, Australia. Hydrol Process 20:4317–4333CrossRefGoogle Scholar
  28. Osman OM (2014) Hydrogeological and geoenvironmental studies of El Behira Governorate, Egypt. PhD Thesis, Tanta University, EgyptGoogle Scholar
  29. Rao NS (2002) Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India. Environ Geol 41:552–562CrossRefGoogle Scholar
  30. RIGW (Research Institute for Groundwater) (1991) Hydrogeological map of Egypt, Burg El-Arab area, scale 1:100,000. RIGW, Cairo, EgyptGoogle Scholar
  31. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern USA. Glob Chang Biol 11:1577–1593CrossRefGoogle Scholar
  32. Sulin VA (1946) Waters of petroleum formations in the system of natural water. Gostoptekhizdat, Moscow, pp 35–96Google Scholar
  33. Thyne G, Güler C, Poeter E (2004) Sequential analysis of hydrochemical data for watershed characterization. Ground Water 42:711–723CrossRefGoogle Scholar
  34. Water Resources Laboratory (1975) Geological and hydrogeological investigations of the 300 000 feddan reclamation project (west of Nubariya). Desert Research Centre (DRC), CairoGoogle Scholar
  35. WHO (2003) The right to water. Health and Human Rights Publication Series no. 3, World Health Organization, Geneva, Switzerland, 44 ppGoogle Scholar
  36. Woocay A, Walton J (2008) Multivariate analyses of water chemistry: surface and ground water interactions. Ground Water 46:437–449CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zenhom E. Salem
    • 1
    Email author
  • Mohamed G. Atwia
    • 1
  • Mohamed M. El-Horiny
    • 1
  1. 1.Geology Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations