Advertisement

Hydrogeology Journal

, Volume 23, Issue 6, pp 1167–1179 | Cite as

An efficient simulation-optimization coupling for management of coastal aquifers

Paper

Abstract

Seawater intrusion in coastal aquifers is a major environmental problem and efficient tools are needed to assist decision making. Decision tools are often simulation models (which evaluate probable actions) combined with optimization algorithms (which search for optimum management decisions). A coupling between simulation models and optimization algorithms for management of coastal aquifers is presented. The simulation models are based on the sharp-interface approximation where the decision variables do not affect the discretized system matrix. For such problems, a transformation of the system matrix prior to optimization is proposed which supports rapid solution of the linear system of equations during the optimization stage, for different values of decision variables. The method is applied to a hypothetical simulation of a coastal aquifer on the Greek island of Santorini, where the proposed simulation-optimization coupling method is employed to maximize pumping rates subject to environmental constraints that protect the aquifer from seawater intrusion. Various packages were tested in order to investigate their efficiency in solving the linear system pertinent to the case study. The proposed method, based on coupling of equations, is found to be very efficient in terms of computational cost. In particular, for the problem examined, it is at least 50 times faster than standard methods, depending on the grid size.

Keywords

Coastal aquifers Seawater intrusion Groundwater management Optimization Greece 

Couplage efficace simulation et optimisation pour la gestion des aquifères côtiers

Résumé

L’intrusion d’eau salée dans les aquifères côtiers est un problème environnemental majeur et des outils efficaces sont nécessaires pour aider à la prise de décision. Les outils d’aide à la décision sont souvent des modèles de simulation (qui évaluent les actions probables) associés à des algorithmes d’optimisation (qui recherchent des décisions de gestion optimales). Un couplage de modèles de simulation à des algorithmes d’optimisation pour la gestion des aquifères côtiers est présenté. Les modèles de simulation sont basés sur l’approximation de l’interface abrupte entre eaux douces et eaux salées pour lequel les variables utiles pour la décision n’affectent par la matrice du système discrétisé. Pour de tels problèmes, une transformation de la matrice du système avant optimisation est proposée, qui permet une solution rapide du système linéaire des équations lors de la phase d’optimisation, pour différentes valeurs de variables utiles pour la décision. La méthode est appliquée à la simulation hypothétique d’un aquifère côtier de l’île grecque de Santorin, pour lequel la méthode proposée de couplage simulation-optimisation est employée pour maximiser les débits de pompage sujets aux contraintes environnementales qui protègent l’aquifère d’une intrusion d’eau de mer. Différentes combinaisons ont été testées afin d’étudier leur efficacité dans la résolution du système linéaire pertinent pour le cas d’étude. La méthode proposée, basée sur le couplage des équations, est très efficace en termes de temps de calcul. En particulier, pour le problème examine, il est au moins 50 fois plus rapide que les méthodes classiques, fonction de la taille de la grille considérée.

Un acoplamiento eficiente de simulación y de optimización para la gestión de los acuíferos costeros

Resumen

La intrusión marina en los acuíferos costeros es un problema ambiental importante y se necesitan herramientas eficientes para ayudar a la toma de decisiones. Las herramientas de decisión son a menudo modelos de simulación (que evalúan las probables acciones) combinados con algoritmos de optimización (que buscan las decisiones de óptimas de gestión). Se presenta un acoplamiento entre los modelos de simulación y algoritmos de optimización para la gestión de los acuíferos costeros. Los modelos de simulación se basan en la aproximación de una interfaz marcada donde las variables de decisión no afectan a la matriz del sistema discretizado. Para este tipo de problemas, se propone una transformación de la matriz del sistema antes de la optimización, que apoya una solución rápida del sistema lineal de ecuaciones durante la etapa de optimización, para diferentes valores de variables de decisión. El método se aplica a una simulación hipotética de un acuífero costero en la isla griega de Santorini, donde se emplea el método de acoplamiento de simulación y de optimización propuesto para maximizar las tasas de bombeo con limitaciones medioambientales que protegen el acuífero de la intrusión de agua de mar. Se ensayaron varios paquetes para investigar su eficiencia en la resolución del sistema lineal pertinente para el caso de estudio. Se encuentra que el método propuesto, sobre la base del acoplamiento de ecuaciones, es muy eficiente en términos de costo computacional. En particular, el problema examinado, es al menos 50 veces más rápido que los métodos estándar, dependiendo del tamaño de cuadrícula.

沿海含水层管理一个有效率的模拟-最优化耦合

摘要

沿海含水层的海水入侵是一个主要的环境问题,需要有效率的工具来支持决策。决策工具通常是模拟模型(评价可能的行为)结合最优化算法(寻找最优化管理决策)。本文展示了沿海含水层管理模拟模型和最优化算法之间的耦合。模拟模型基于截面近似值,在截面上,决策变量不影响离散系统基质。针对这样的问题,提出了最优化前系统基质的转化,转化对不同的决策变量值在最优化阶段支撑公式线性系统的快速解决。方法应用于希腊圣托里尼岛一个沿海含水层的假定模拟中,在这个地方,采用所述的模拟-最优化耦合方法提出了确保含水层免受海水入侵情况下的最大抽水量。实验了各种方案以调查每个方案在解决与实例研究有关的线性系统中的效率。所述的方法基于公式的耦合,发现在计算费用上非常有效率。尤其是对于检查的问题,至少比标准方法快50倍,这取决于网格的大小。

Um acoplamento simulação-otimização eficiente para gerenciamento de aquíferos costeiros

Resumo

Intrusão de água marinha em aquíferos costeiros é um importante problema ambiental e ferramentas eficientes para assessorar a tomada de decisão são necessários. Ferramentas de decisão são geralmente modelos de simulação (que avaliam ações prováveis) combinados com algoritmos de otimização (que procuram por decisões de gerenciamento ótimas). Um acoplamento entre modelos de simulação e algoritmos de otimização para o gerenciamento de aquíferos costeiros é apresentado. Os modelos de simulação são baseados na aproximação da interface abrupta onde as variáveis de decisão não afetam o sistema matricial discretizado. Para tais problemas, uma transformação no sistema matricial antes da otimização é proposta, a qual suporta soluções rápidas do sistema de equações lineares durante o estágio de otimização, para diferentes valores das variáveis de decisão. O método é aplicado a uma simulação hipotética de um aquífero costeiro na ilha Grega de Santorini, onde o método de acoplamento simulação-otimização é empregado para maximizar a taxas de bombeamento sujeitas a restrições ambientais que protegem o aquífero da intrusão de água do mar. Vários pacotes foram testados com o propósito de investigar suas eficiências em solucionar o sistema linear pertinente à cada estudo de caso. O método proposto, baseado no acoplamento de equações, é considerado muito eficiente em termos de custos computacionais. Em particular, para o problema examinado, isso é ao menos 50 vezes mais rápido do que métodos padrões, dependendo do tamanho da malha.

Notes

Acknowledgements

This work was partially supported by the California Department of Food and Agriculture under agreement No. FREP 11-0301.

References

  1. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK users’ guide. SIAM, Philadelphia, PACrossRefGoogle Scholar
  2. Ataie-Ashtiani B (2006) MODSHARP: regional-scale numerical model for quantifying groundwater flux and contaminant discharge into the coastal zone. J Coast Res 39:1875–1878Google Scholar
  3. Bakker M (2003) A Dupuit formulation for modeling seawater intrusion in regional aquifer systems. Water Resour Res 39(5):1131. doi: 10.1029/2002WR001710 Google Scholar
  4. Bakker M (2006) Analytic solutions for interface flow in combined confined and semi-confined, coastal aquifers. Adv Water Resour 29(3):417–425. doi: 10.1016/j.advwatres.2005.05.009 CrossRefGoogle Scholar
  5. Bakker M, Schaars F (2005) The Sea Water Intrusion (SWI) package manual: part I, theory, user manual, and examples version 1.2. www.modflowswi.googlecode.com. Accessed June 3, 2012
  6. Bakker M, Schaars F (2013) Modeling steady sea water intrusion with single-density groundwater codes. Ground Water 51:135–144. doi: 10.1111/j.1745-6584.2012.00955.x CrossRefGoogle Scholar
  7. Bangerth W, Heister T, Heltai L, Kanschat G, Kronbichler M, Maier M, Turcksin B, Young TD (2013) The deal.II Library, Version 8.1, math.NA. arXiv:1312.2266. Accessed June 2015Google Scholar
  8. Bau D (2012) Planning of groundwater supply systems subject to uncertainty using stochastic flow reduced models and multi-objective evolutionary optimization. Water Resour Manag 26(9):2513–2536. doi: 10.1007/s11269-012-0030-4 CrossRefGoogle Scholar
  9. Bauer-Gottwein P, Gondwe BRN, Charvet G, Marin LE, Rebolledo-Vieyra M, Merediz-Alonso G (2011) Review: the Yucatan Peninsula karst aquifer, Mexico. Hydrogeol J 19(3):507–524. doi: 10.1007/s10040-010-0699-5 CrossRefGoogle Scholar
  10. Bhattacharjya RK, Datta B (2005) Optimal management of coastal aquifers using linked simulation optimization approach. Water Resour Manag 19(3):295–320. doi: 10.1007/s11269-005-3180-9 CrossRefGoogle Scholar
  11. Bhattacharjya RK, Datta B (2009) ANN-GA-based model for multiple objective management of coastal aquifers. J Water Resour Plan Manag 135(5):314–322. doi: 10.1061/(ASCE)0733-9496(2009)135:5(314) CrossRefGoogle Scholar
  12. Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Groundwater 50:170–176. doi: 10.1111/j.1745-6584.2011.00882.x CrossRefGoogle Scholar
  13. Chang CM, Yeh H-D (2010) Spectral approach to seawater intrusion in heterogeneous coastal aquifers. Hydrol Earth Syst Sci 14(5):719–727. doi: 10.5194/hess-14-719-2010 CrossRefGoogle Scholar
  14. Cheng AH-D, Halhal D, Naji A, Ouazar D (2000) Pumping optimization in saltwater-intruded coastal aquifers. Water Resour Res 36(8):2155–2165CrossRefGoogle Scholar
  15. Cincotta RP, Gorenflo LJ (2011) Human population: its influences on biological diversity. Springer, BerlinCrossRefGoogle Scholar
  16. Cobaner M, Yurtal R, Dogan A, Motz LH (2012) Three-dimensional simulation of seawater intrusion in coastal aquifers: a case study in the Goksu Deltaic Plain. J Hydrol 464:262–280. doi: 10.1016/j.jhydrol.2012.07.022 CrossRefGoogle Scholar
  17. Custodio E (2010) Coastal aquifers of Europe: an overview. Hydrogeol J 18(1):269–280. doi: 10.1007/s10040-009-0496-1 CrossRefGoogle Scholar
  18. Das A, Datta B (1999) Development of multiobjective management models for coastal aquifers. J Hydrol Eng 5(1):82–89. doi: 10.1061/(ASCE)1084-0699(2000)5:1(82) CrossRefGoogle Scholar
  19. Daskalaki P, Voudouris K (2008) Groundwater quality of porous aquifers in Greece: a synoptic review. Environ Geol 54(3):505–513. doi: 10.1007/s00254-007-0843-2 CrossRefGoogle Scholar
  20. Davis TA (2004) Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30(2):196–199CrossRefGoogle Scholar
  21. Davis TA, Palamadai Natarajan E (2010) Algorithm 907: KLU, a direct sparse solver for circuit simulation problems. ACM Trans Math Softw 37(3):1–17. doi: 10.1145/1824801.1824814
  22. Finney BA, Samsuhadi, Willis R (1992) Quasi-three-dimensional optimization model for Jakarta basin. J Water Resour Plann Manag 118(1):18–31CrossRefGoogle Scholar
  23. Fleury P, Bakalowicz M, de Marsily G (2007) Submarine springs and coastal karst aquifers: a review. J Hydrol 339:79–92. doi: 10.1016/j.jhydrol.2007.03.009 CrossRefGoogle Scholar
  24. Gee MW, Siefert CM, Hu JJ, Tuminaro RS, Sala MG (2006) ML 5.0 smoothed aggregation user’s guide. SAND2006-2649, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  25. Geuzaine C, Remacle J-F (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331CrossRefGoogle Scholar
  26. Grundmann J, Schuetze N, Lennartz F (2013) Sustainable management of a coupled groundwater-agriculture hydrosystem using multi-criteria simulation based optimization. Water Sci Technol 67(3):689–698. doi: 10.2166/wst.2012.602 CrossRefGoogle Scholar
  27. Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, Nagoya, Japan, May 1996, pp 312–317Google Scholar
  28. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9:159–195. doi: 10.1162/106365601750190398 CrossRefGoogle Scholar
  29. Hansen N, Ostermeier A, Gawelczyk A (1995) On the adaptation of arbitrary normal mutation distributions in evolution strategies: the generating set adaptation. In: Proceedings of the Sixth International Conference on Genetic Algorithms, Pittsburgh, PA, July 1995, pp 57–64Google Scholar
  30. Hansen N, Muller DS, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11:1–18. doi: 10.1162/106365603321828970 CrossRefGoogle Scholar
  31. Harbaugh AW (2005) MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model the Ground-Water Flow Process. US Geol Surv Tech Methods 6-A16. http://pubs.usgs.gov/tm/2005/tm6A16/
  32. Hernandez EA, Uddameri V, Singaraju S (2014) Combined optimization of a wind farm and a well field for wind-enabled groundwater production. Environ Earth Sci 71(6):2687–2699. doi: 10.1007/s12665-013-2907-9 CrossRefGoogle Scholar
  33. Heroux M, Bartlett R, Hoekstra VHR, Hu J, Kolda T, Lehoucq R, Long K, Pawlowski R, Phipps E, Salinger A, Thornquist H, Tuminaro R, Willenbring J, Williams A (2003) An overview of Trilinos. SAND2003-2927, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  34. Kacimov AR, Sherif MM (2006) Sharp interface, one-dimensional seawater intrusion into a confined aquifer with controlled pumping: analytical solution. Water Resour Res 42:W06501. doi: 10.1029/2005WR004551 Google Scholar
  35. Kacimov AR, Sherif MM, Perret JS, Al-Mushikhi A (2009) Control of sea-water intrusion by salt-water pumping: coast of Oman. Hydrogeol J 17(3):541–558. doi: 10.1007/s10040-008-0425-8 CrossRefGoogle Scholar
  36. Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng Comput 22(3–4):237–254. doi: 10.1007/s00366-006-0049-3 CrossRefGoogle Scholar
  37. Kopsiaftis G, Mantoglou A, Giannoulopoulos P (2009) Variable density coastal aquifer models with application to an aquifer on Thira Island. Desalination 237:65–80. doi: 10.1016/j.desal.2007.12.023 CrossRefGoogle Scholar
  38. Kourakos G, Harter T (2014) Vectorized simulation of groundwater flow and streamline transport. Environ Model Softw 52:207–221. doi: 10.1016/j.envsoft.2013.10.029 CrossRefGoogle Scholar
  39. Kourakos G, Mantoglou A (2009) Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models. Adv Water Resour 32(4):507–521. doi: 10.1016/j.advwatres.2009.01.001 CrossRefGoogle Scholar
  40. Kourakos G, Mantoglou A (2011) Simulation and multi-objective management of coastal aquifers in semi-arid regions. Water Resour Manage 25:1063–1074. doi: 10.1007/s11269-010-9677-x
  41. Kourakos G, Mantoglou A (2013) Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management. J Hydrol 479(4):13–23. doi: 10.1016/j.jhydrol.2012.10.050 CrossRefGoogle Scholar
  42. Koussis AD, Mazi K, Destouni G (2012) Analytical single-potential, sharp-interface solutions for regional seawater intrusion in sloping unconfined coastal aquifers, with pumping and recharge. J Hydrol 416:1–11. doi: 10.1016/j.jhydrol.2011.11.012 CrossRefGoogle Scholar
  43. Langevin CD, Zygnerski M (2013) Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida. Ground Water 51(5):781–803. doi: 10.1111/j.1745-6584.2012.01008.x CrossRefGoogle Scholar
  44. Li Q, Ito K, Wu Z, Lowry CS, Loheide SP II (2009) COMSOL multiphysics: a novel approach to ground water modeling. Ground Water 47:480–487. doi: 10.1111/j.1745-6584.2009.00584.x CrossRefGoogle Scholar
  45. Lin J, Snodsmith JB, Zheng CM, Wu JF (2009) A modeling study of seawater intrusion in Alabama Gulf Coast, USA. Environ Geol 57(1):119–130. doi: 10.1007/s00254-008-1288-y CrossRefGoogle Scholar
  46. Liu CCK, Dai JJ (2012) Seawater intrusion and sustainable yield of basal aquifers. J Am Water Resour Assoc 48:861–870. doi: 10.1111/j.1752-1688.2012.00659.x CrossRefGoogle Scholar
  47. Lu W, Yang QC, Martin JD, Juncosa R (2013) Numerical modelling of seawater intrusion in Shenzhen (China) using a 3D density-dependent model including tidal effects. J Earth Syst Sci 122(2):451–465. doi: 10.1007/s12040-013-0273-3 CrossRefGoogle Scholar
  48. Mantoglou A (2003) Pumping management of coastal aquifers using analytical models of saltwater intrusion. Water Resour Res 39:1335. doi: 10.1029/2002WR001891 Google Scholar
  49. Mantoglou A, Giannoulopoulos P (2004) Sustainable yield of coastal aquifers using simulation and optimization: application to Santorini Island, Intenational Conference, Protection and Restoration of the Environment VII, Mykonos, GreeceGoogle Scholar
  50. Mantoglou A, Papantoniou M (2008) Optimal design of pumping networks in coastal aquifers using sharp interface models. J Hydrol 361:52–63CrossRefGoogle Scholar
  51. Mantoglou A, Papantoniou M, Giannoulopoulos P (2004) Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms. J Hydrol 297:209–228CrossRefGoogle Scholar
  52. Masciopinto C (2006) Simulation of coastal groundwater remediation: the case of Nardo fractured aquifer in southern Italy. Environ Model Softw 21(1):85–97. doi: 10.1016/j.envsoft.2004.09.028 CrossRefGoogle Scholar
  53. Mategaonkar M, Eldho TI (2012) Groundwater remediation optimization using a point collocation method and particle swarm optimization. Environ Model Softw 32:37–48. doi: 10.1016/j.envsoft.2012.01.003 CrossRefGoogle Scholar
  54. Mazi K, Koussis AD, Destouni G (2013) Tipping points for seawater intrusion in coastal aquifers under rising sea level. Environ Res Lett 8(1):014001. doi: 10.1088/1748-9326/8/1/014001 CrossRefGoogle Scholar
  55. Narayan KA, Schleeberger C, Bristow KL (2007) Modelling seawater intrusion in the Burdekin Delta Irrigation Area, North Queensland, Australia. Agric Water Manag 89(3):217–228. doi: 10.1016/j.agwat.2007.01.008 CrossRefGoogle Scholar
  56. Padilla F, Benavente J, Cruz-Sanjulian J (1997) Numerical simulation of the influence of management alternatives of a projected reservoir on a small alluvial aquifer affected by seawater intrusion (Almunecar, Spain). Environ Geol 33(1):72–80CrossRefGoogle Scholar
  57. Paniconi C, Khlaifi I, Lecca G, Giacomelli A, Tarhouni J (2001) Modeling and analysis of seawater intrusion in the coastal aquifer of eastern Cap-Bon, Tunisia. Transp Porous Media 43(1):3–28. doi: 10.1023/A:1010600921912 CrossRefGoogle Scholar
  58. Park CH, Aral MM (2004) Multi‐objective optimization of pumping rates and well placement in coastal aquifers. J Hydrol 290(1–2):80–99CrossRefGoogle Scholar
  59. Pool M, Carrera J (2011) A correction factor to account for mixing in Ghyben-Herzberg and critical pumping rate approximations of seawater intrusion in coastal aquifers. Water Resour Res 47:W05506. doi: 10.1029/2010WR010256 Google Scholar
  60. Qahman K, Larabi A (2006) Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine). Hydrogeol J 14(5):713–728. doi: 10.1007/s10040-005-003-2 CrossRefGoogle Scholar
  61. Razavi S, Tolson BA, Burn DH (2012) Numerical assessment of metamodelling strategies in computationally intensive optimization. Environ Model Softw 34:67–86. doi: 10.1016/j.envsoft.2011.09.010 CrossRefGoogle Scholar
  62. Reilly TE, Goodman AS (1985) Quantitative analysis of saltwater–freshwater relationships in ground-water systems: a historical perspective. J Hydrol 80:125–160CrossRefGoogle Scholar
  63. Sala A, Stanley KS, Heroux MA (2008) On the design of interfaces to sparse direct solvers. ACM Trans Math Softw 34(2):1–22. doi: 10.1145/1326548.1326551
  64. Shi L, Cui L, Park N, Huyakorn PS (2011) Applicability of a sharp-interface model for estimating steady-state salinity at pumping wells-validation against sand tank experiments. J Contam Hydrol 124:35–42. doi: 10.1016/j.jconhyd.2011.01.005 CrossRefGoogle Scholar
  65. Singh A (2014) Optimization modeling for seawater intrusion management. J Hydrol 508:43–52. doi: 10.1016/j.jhydrol.2013.10.042 CrossRefGoogle Scholar
  66. Sreekanth J, Datta B (2011) Comparative evaluation of genetic programming and neural network as potential surrogate models for coastal aquifer management. Water Resour Manag 25(13):3201–3218. doi: 10.1007/s11269-011-9852-8 CrossRefGoogle Scholar
  67. Steyl G, Dennis I (2010) Review of coastal-area aquifers in Africa. Hydrogeol J 18(1):217–225. doi: 10.1007/s10040-009-0545-9 CrossRefGoogle Scholar
  68. Strack ODL (1976) A single-potential solution for regional interface problems in coastal aquifers. Water Resour Res 12(6):1165–1174. doi: 10.1029/WR012i006p01165 CrossRefGoogle Scholar
  69. Tber MH, Talibi MEA (2007) A finite element method for hydraulic conductivity identification in a seawater intrusion problem. Comput Geosci 33(7):860–874. doi: 10.1016/j.cageo.2006.10.012 CrossRefGoogle Scholar
  70. Trefry MG, Muffels C (2007) FEFLOW: a finite-element ground water flow and transport modeling tool. Ground Water 45:525–528. doi: 10.1111/j.1745-6584.2007.00358.x CrossRefGoogle Scholar
  71. Voss C, Provost AM (2002) SUTRA: a model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport. US Geol Surv Water Resour Invest Rep 2002-4231Google Scholar
  72. Werner AD (2010) A review of seawater intrusion and its management in Australia. Hydrogeol J 18(1):281–285. doi: 10.1007/s10040-009-0465-8 CrossRefGoogle Scholar
  73. Werner AD, Gallagher MR (2006) Characterisation of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modeling. Hydrogeol J 14(8):1452–1469. doi: 10.1007/s10040-006-0059-7 CrossRefGoogle Scholar
  74. Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26CrossRefGoogle Scholar
  75. Willis R, Finney BA (1985) Optimal control of nonlinear groundwater hydraulics: theoretical development and numerical experiments. Water Resour Res 21(10):1476–1482. doi: 10.1029/WR021i010p01476 CrossRefGoogle Scholar
  76. Winston RB (2009) ModelMuse: a graphical user interface for MODFLOW-2005 and PHAST. US Geol Surv Tech Methods 6-A29, 52 ppGoogle Scholar
  77. Xiaoye SL (2005) An overview of SuperLU: algorithms, implementation, and user interface. TOMS 31(3):302–325CrossRefGoogle Scholar
  78. Xue Y, Xie C, Wu J, Liu P, Wang J, Jiang Q (1995) A three-dimensional miscible transport model for seawater intrusion in China. Water Resour Res 31(4):903–912. doi: 10.1029/94WR02379 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Land Air and Water ResourcesUniversity of California DavisDavisUSA
  2. 2.Department of Rural and Surveying EngineeringTechnical University of AthensAthensGreece

Personalised recommendations