Advertisement

Hydrogeology Journal

, Volume 23, Issue 6, pp 1089–1107 | Cite as

Optimal characterization of pollutant sources in contaminated aquifers by integrating sequential-monitoring-network design and source identification: methodology and an application in Australia

  • Om Prakash
  • Bithin DattaEmail author
Paper

Abstract

Often, when pollution is first detected in groundwater, very few spatiotemporal pollutant concentration measurements are available. The contaminant concentration measurement data initially available are generally sparse and insufficient for accurate source characterization. This requires development of a contaminant monitoring plan and its field implementation to collect more data. The location of scientifically chosen monitoring points and the number of measurements are important considerations in improving the source-characterization process, especially in a complex contamination scenario. In order to improve the efficiency of source characterization, a feedback-based methodology is implemented, integrating sequential-monitoring-network design and a source identification method. The simulated annealing (SA) optimization algorithm is used to solve the models for optimal source identification and the monitoring-network-design optimization. This sequence is repeated a few times to improve the accuracy of source characterization. The methodology is based on the premise that concentration measurements from a sequence of implemented monitoring networks provide feedback information on the actual concentration in the site. This additional information, obtained as feedback from monitoring networks designed and implemented based on intermediate source characterization, can result in sequential improvement in the resulting source characterization. The performance of this methodology is evaluated by application to a contaminated aquifer site in New South Wales, Australia, where source location, source-activity initiation time and source-flux (mass per unit time) release history are considered as unknown variables. The performance evaluation results demonstrate potential applicability of the proposed sequential methodology.

Keywords

Groundwater-monitoring-network design Contamination Integrated sequential source identification Optimization Australia 

Caractérisation optimale des sources de polluants dans les aquifères contaminés en intégrant la conception séquentielle d’un réseau de surveillance et l’identification de la source: méthodologie et application en Australie

Résumé

Souvent, lorsque la pollution est d’abord détectée dans les eaux souterraines, très peu de mesures de concentrations réparties dans le temps et l’espace sont disponibles. Les données de mesure de concentration des contaminants initialement disponibles sont généralement éparses et insuffisantes pour une caractérisation précise de la source. Cela nécessite le développement d’un plan de surveillance des contaminants et de sa mise en œuvre sur le terrain pour recueillir davantage de données. L’emplacement des points de contrôle choisis scientifiquement et le nombre de mesures sont importants à prendre en considération pour améliorer le processus de caractérisation de la source, en particulier dans un scénario de contamination complexe. Afin d’améliorer l’efficacité de la caractérisation de la source, une méthodologie basée sur la rétroaction est mise en œuvre, intégrant la conception séquentielle d’un réseau de suivi et une méthode d’identification de la source. L’algorithme d’optimisation du recuit simulé (SA) est utilisé pour résoudre les modèles d’identification optimale de la source et l’optimisation de la conception du réseau de suivi. Cette séquence est répétée plusieurs fois afin d’améliorer la précision de la caractérisation de la source. La méthodologie est fondée sur la prémisse selon laquelle les mesures de concentration d’une séquence de réseaux de surveillance implantés fournissent des informations en retour sur la concentration réelle sur le site. Cette information additionnelle, obtenue comme retour d’information des réseaux de suivi conçus et mis en œuvre sur la base de la caractérisation intermédiaire de la source, peut avoir comme résultat une amélioration séquentielle dans la caractérisation de la source résultante. La performance de cette méthodologie est évaluée avec une application sur un aquifère contaminé en Nouvelles Galles du Sud, en Australie, où l’emplacement de la source, le temps d’initiation de l’activité de la source et l’historique d’émission du flux depuis la source (masse par unité de temps) sont considérés comme des variables inconnues. Les résultats de l’évaluation de la performance démontrent l’applicabilité potentielle de la méthodologie séquentielle proposée.

Caracterización óptima de fuentes contaminantes en acuíferos contaminados mediante la integración del diseño de una red de monitoreo secuencial y la identificación de la fuente: metodología y una aplicación en Australia

Resumen

Cuando se detecta la primera contaminación del agua subterránea, a menudo están disponibles muy pocas mediciones espacio-temporales de la concentración de los contaminantes. Los datos de medición de concentración de contaminantes inicialmente disponibles son generalmente escasos e insuficientes para una caracterización precisa de la fuente. Esto requiere el desarrollo de un plan de monitoreo de contaminantes y su aplicación en el campo para recolectar más datos. La ubicación de los puntos de control científicamente seleccionados y el número de mediciones son consideraciones importantes para mejorar del proceso de la caracterización de la fuente, especialmente en un escenario complejo de contaminación. Con el fin de mejorar la eficiencia de la caracterización de la fuente, se implementa una metodología basada en la retroalimentación integrando el diseño de la red de monitoreo secuencial y un método de identificación de la fuente. El algoritmo de optimización de recocido simulado (SA) se utiliza para resolver los modelos de la identificación óptima de la fuente y de la optimización del diseño de la red de monitoreo. Esta secuencia se repite varias veces para mejorar la precisión de la caracterización de la fuente. La metodología se basa en la premisa que las mediciones de concentración de una secuencia en las redes de monitoreo implementadas proporcionan información de retroalimentación de la concentración real en el sitio. Esta información adicional, obtenida como la retroalimentación del monitoreo de las redes diseñadas e implementadas con base en una caracterización intermedia de la fuente, puede resultar en una mejora en la caracterización secuencial de la fuente resultante. El rendimiento de esta metodología se evalúa mediante la aplicación a un sitio en un acuífero contaminado en Nueva Gales del Sur, Australia, donde la ubicación de la fuente, la actividad de la fuente en el inicio y la fuente de flujo (masa por unidad de tiempo) en la historia de liberación se consideran como variables desconocidas. Los resultados de la evaluación de rendimiento demuestran el potencial de aplicabilidad de la metodología secuencial propuesta.

依靠整合连续监测网络设计和源识别对污染含水层污染源进行最优化描述:方法及其在澳大利亚的应用

摘要

通常,当地下水中首次检测到污染时,时空污染含量测量数据非常少。最初拥有的污染物含量测量数据一般很稀少和不足,难以对准确的源进行描述。这就需要制定污染物监测计划和室外实施方案,收集更多的数据。科学地选择出的监测点的位置和测量数量在改进源描述过程中是重要的考虑事项,特别是在复杂的污染情况下。为了提高源描述的效率,采用了基于反馈的方法,并综合连续监测网络设计和源识别方法。利用模拟退火最优化算法解决最优源识别模型和监测网络设计最优化。这个序列重复几次,以改进源描述的精度。方法基于这样的假设,即从一系列应用的监测网络获取的含量测量结果提供了测量点实际含量的反馈信息。这个基于中间的源描述从设计和应用的监测网络获取的额外信息可使源描述持续改进。通过应用到澳大利亚新南威尔士州一个污染的含水层,这个方法的性能得到了评估,在这个污染的含水层,其源位置、源活力起始时间和源通量(每单位时间的质量)释放历史被认为是未知变量。性能评估结果证明了所述连续方法的潜在适用性。

Caracterização ótima de fontes de poluentes em aquíferos contaminados utilizando desenho de rede de monitoramento sequencial integrada e identificação de fonte: metodologia e uma aplicação na Austrália

Resumo

Geralmente, quando a poluição é inicialmente detectada nas águas subterrâneas, muito poucas medidas espaço-temporais da concentração do poluente estão disponíveis. Os dados de medição da concentração do contaminante são geralmente esparsos e insuficientes para uma caracterização acurada da fonte. Isso requer o desenvolvimento de um plano de monitoramento do contaminante e sua implementação à campo para coletar mais dados. A locação de pontos de monitoramento especificamente escolhidos e o número de medições são considerações importantes na melhoria do processo de caracterização da fonte, especialmente em um cenário de contaminação complexo. Para melhorar a eficiência do processo da fonte, uma metodologia baseada em retroinformação é implementada, integrando desenho de uma rede de monitoramento sequencial integrada e um método de identificação de fonte. O algoritmo de otimização de arrefecimento simulado (AS) é utilizado para resolver os modelos para uma ótima identificação de fonte e para otimização do desenho da rede de monitoramento. Essa sequência é repetida algumas vezes para melhorar a acurácia da caracterização da fonte. A metodologia é baseada na premissa de que medidas de concentração para uma sequência de redes de monitoramento implementadas provem retroinformação da concentração atual no local. Essa informação adicional, obtida como retroinformação do desenho das redes de monitoramento e implementada baseada na caracterização intermediária da fonte, pode resultar em uma melhoria sequencial na caraterização de fonte resultante. O desempenho dessa metodologia é avaliado pela sua aplicação em um aquífero contaminado em Nova Gales do Sul, Austrália, onde local da fonte, tempo de início da atividade da fonte e histórico de lançamento do fluxo da fonte (massa por unidade de tempo) são consideradas variáveis desconhecidas. A avaliação do desempenho dos resultados demonstra uma aplicabilidade potencial da metodologia sequencial proposta.

Notes

Acknowledgements

The second author thanks CRC-CARE, Australia, for providing financial support for this research through Project No. 5.6.0.3.09/10(2.6.03), CRC-CARE (Bithin Datta) which partially funded the PhD scholarship of the first author. The authors are also grateful to Adrian Heggie, Principal Scientist and Team Executive, Contaminated Land, at Parsons Brinckerhoff (Sydney, New South Wales) for providing the raw measurement data from the contaminated aquifer site.

References

  1. Ababou R, Bagtzoglou AC, Mallet A (2010) Anti-diffusion and source identification with the RAW scheme: a particle-based censored random walk. J Environ Fluid Mech. doi: 10.1007/s10652-009-9153-4 Google Scholar
  2. Amirabdollahian M, Datta B (2013) Identification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overview. J Environ Prot. doi: 10.4236/jep.2013.45A004 Google Scholar
  3. Aral MM, Guan J, Maslia ML (2001) Identification of contaminant source location and release history in aquifers. J Hydrol Eng 6(3):225–234CrossRefGoogle Scholar
  4. Atmadja J, Bagtzoglou AC (2001a) Pollution source identification in heterogeneous porous media. Water Resour Res 37(8):2113–2125CrossRefGoogle Scholar
  5. Atmadja J, Bagtzoglou AC (2001b) State of the art report on mathematical methods to reliable of groundwater pollution source identification. Environ Forensic 2(3):205–214CrossRefGoogle Scholar
  6. Ayvaz MT (2010) A linked simulation–optimization model for solving the unknown groundwater pollution source identification problems. J Contam Hydrol 117:46–59CrossRefGoogle Scholar
  7. Bagtzoglou AC (2003) On the non-locality of reversed time particle tracking methods. Environ Forensic 4(3):215–225CrossRefGoogle Scholar
  8. Bagtzoglou AC, Atmadja J (2003) Marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: application to contaminant plume spatial distribution recovery. Water Resour Res 39(2):10–14. doi: 10.1029/2001WR001021 Google Scholar
  9. Bagtzoglou AC, Atmadja J (2005) Mathematical methods for hydrologic inversion: the case of pollution source identification. Handb Environ Chem 3:65–96Google Scholar
  10. Bagtzoglou AC, Baun SA (2005) Near real-time atmospheric contamination source identification by an optimization-based inverse method. Inverse Prob Sci Eng 13(3):241–259CrossRefGoogle Scholar
  11. Bagtzoglou AC, Dougherty DE, Tompson AFB (1992) Application of particle methods to reliable identification of groundwater pollution sources. Water Resour Manag 6:15–23CrossRefGoogle Scholar
  12. Bashi-Azghadi NS, Kerachian R (2010) Locating monitoring wells in groundwater systems using embedded optimization and simulation models. Sci Total Environ 408(10):2189–2198CrossRefGoogle Scholar
  13. Bashi-Azghadi NS, Kerachian R, Lari MRB, Solouki K (2010) Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN. Expert Syst Appl 37:7154–7161CrossRefGoogle Scholar
  14. Chadalavada S, Datta B (2008) Dynamic optimal monitoring network design for transient transport of pollutants in groundwater aquifers. Water Resour Manag 22:651–670CrossRefGoogle Scholar
  15. Chadalavada S, Datta B, Naidu R (2011) Optimisation approach for pollution source identification in groundwater: an overview. Int J Environ Waste Manag 8(1–2):40–61CrossRefGoogle Scholar
  16. Cieniawski SE, Eheart WJ, Ranjithan S (1995) Using genetic algorithm to solve a multiple objective groundwater monitoring problem. Water Resour Res 31(2):399–409CrossRefGoogle Scholar
  17. Datta B (2002) Discussion of “Identification of contaminant source location and release history in aquifers” by Mustafa M. Aral, Jiabao Guan, and Morris L. Maslia. J Hydrol Eng 7(5):399–400CrossRefGoogle Scholar
  18. Datta B, Dhiman DS (1996) Chance-constrained optimal monitoring network design for pollutants in groundwater. J Water Resour Plan Manag 122(3):180–188CrossRefGoogle Scholar
  19. Datta B, Beegle JE, Kavvas ML, Orlob GT (1989) Development of an expert-system embedding pattern-recognition techniques for pollution source identification, Technical report PB-90-185927/XAB, OSTI ID:6855981, Dept. of Civil Eng., University of California, Davis, CAGoogle Scholar
  20. Datta B, Chakrabarty D, Dhar A (2009a) Optimal dynamic monitoring network design and identification of unknown groundwater pollution sources. Water Resour Manag 23(10):2031–2049CrossRefGoogle Scholar
  21. Datta B, Chakrabarty D, Dhar A (2009b) Simultaneous identification of unknown groundwater pollution sources and estimation of aquifer parameters. J Hydrol 376(1, 2):48–57CrossRefGoogle Scholar
  22. Datta B, Chakrabarty D, Dhar A (2011) Identification of unknown groundwater pollution sources using classical optimization with linked simulation. J Hydro Environ Res 5:25–36CrossRefGoogle Scholar
  23. Datta B, Prakash O, Campbell S, Escalada G (2013) Efficient identification of unknown groundwater pollution sources using linked simulation–optimization incorporating monitoring location impact factor and frequency factor. Water Resour Manag. doi: 10.1007/s11269-013-0451-8 Google Scholar
  24. Datta B, Prakash O, Sreekanth J (2014) Application of genetic programming models incorporated in optimization models for contaminated groundwater systems management. Adv Intell Syst Comput 288:183–199. doi: 10.1007/978-3-319-07494-8_13 CrossRefGoogle Scholar
  25. Dhar A, Datta B (2007) Multi-objective design of dynamic monitoring networks for detection of groundwater pollution. J Water Resour Plan Manag 133(4):329–338CrossRefGoogle Scholar
  26. Dhar A, Datta B (2010) Logic-based design of groundwater monitoring network for redundancy reduction. J Water Resour Plan Manag 136:88CrossRefGoogle Scholar
  27. Feng-guang Y, Shu-you C, Xing-nian L, Ke-jun Y (2008) Design of groundwater level monitoring network with ordinary kriging. J Hydrodyn 20:339–346CrossRefGoogle Scholar
  28. Fethi BJ, Loaiciga AH, Marino AM (1994) Multivariate geostatistical design of groundwater monitoring networks. J Water Resour Plan Manag ASCE 120(4):505–522CrossRefGoogle Scholar
  29. Goffe WL (1996) SIMANN: a global optimization algorithm using simulated annealing, studied in nonlinear dynamics and econometrics. Berkeley Electronic Press, BerkeleyGoogle Scholar
  30. Gorelick SM, Evans B, Ramson I (1983) Identifying sources of groundwater pollution: an optimization approach. Water Resour Res 19(3):779–790CrossRefGoogle Scholar
  31. Grabow G, Mote RC, Yoder CD (2000) An empirically-based sequential ground water monitoring network design procedure. J Am Water Resour Assoc 36(3):549–566CrossRefGoogle Scholar
  32. Guo Y, Wang FJ, Yin LX (2011) Optimizing the groundwater monitoring network using MSN theory. Procedia Soc Behav Sci 21:240–242CrossRefGoogle Scholar
  33. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey modular ground-water model. US Geol Surv Open-File Rep 00–92, 121 ppGoogle Scholar
  34. Hudak PF, Loaiciga AH, Marino AM (1995) Regional-scale ground water quality monitoring via integer programming. J Hydrol (Amst) 164(1–4):153–170CrossRefGoogle Scholar
  35. Husam B (2010) Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains. N Z Agric Water Manag 97(2):240–246CrossRefGoogle Scholar
  36. Jha MK, Datta B (2011) Simulated annealing based simulation-optimization approach for identification of unknown contaminant sources in groundwater aquifers. Desalin Water Treat 32(1–3):79–85CrossRefGoogle Scholar
  37. Jha MK, Datta B (2012a) Linked simulation-optimization based methodologies for unknown groundwater pollutant source identification in managed and unmanaged contaminated sites, chap 4. PhD Thesis, James Cook University, AustraliaGoogle Scholar
  38. Jha MK, Datta B (2012b) Application of simulated annealing in water resources management: optimal solution of groundwater contamination source characterization problem and monitoring network design problems. In: Simulated annealing: single and multiple objective problems. InTech, Rijeka, Croatia, pp 157–174. doi: 10.5772/45871
  39. Jha MK, Datta B (2013) Three-dimensional groundwater contamination source identification using adaptive simulated annealing. J Hydrol Eng 18(3):307–317CrossRefGoogle Scholar
  40. Kirkpatrick S, Gelatta DC, Vecchi PM (1983) Optimization by simulated annealing. Science 220:671–680CrossRefGoogle Scholar
  41. Kollat JB, Reed PM, Kasprzyk JR (2008) A new Epsilon-dominance hierarchical Bayesian optimization algorithm for large multi-objective monitoring network design problems. Adv Water Resour 31(5):828–845CrossRefGoogle Scholar
  42. Kollat JB, Reed PM, Maxwell R (2011) Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics. Water Resour Res 47, W02529Google Scholar
  43. Liu C, Ball WP (1999) Application of inverse methods to contaminant source identification from aquitard diffusion profiles at Dover AFB, Delaware. Water Resour Res 35(7):1975–1985CrossRefGoogle Scholar
  44. Loaiciga HA (1989) An optimization approach for groundwater quality monitoring network design. Water Resour Res 25(8):1771–1782CrossRefGoogle Scholar
  45. Loaiciga HA, Hudak PF (1992) A location modelling approach for groundwater monitoring network augmentation. Water Resour Res 28(3):643–649CrossRefGoogle Scholar
  46. Loaiciga HA, Hudak PF (1993) An optimization method for network design in multilayered groundwater flow systems. Water Resour Res 29:2835CrossRefGoogle Scholar
  47. Mahar PS, Datta B (1997) Optimal monitoring network and ground-water pollution source identification. J Water Resour Plan Manag 123(4):199–207CrossRefGoogle Scholar
  48. Mahar PS, Datta B (2000) Identification of pollution sources in transient groundwater system. Water Resour Manag 14(6):209–227CrossRefGoogle Scholar
  49. Mahar PS, Datta B (2001) Optimal identification of ground-water pollution sources and parameter estimation. J Water Resour Plan Manag 127(1):20–29CrossRefGoogle Scholar
  50. Mahinthakumar G, Sayeed M (2005) Hybrid genetic algorithm-local search methods for solving groundwater source identification inverse problems. J Water Resour Plan Manag 131(1):45–57CrossRefGoogle Scholar
  51. Marsden J (2011) Report for strengthening basin communities: planning study business case—enhancing Dubbo’s irrigation system, Dubbo City Council, NSW, AustraliaGoogle Scholar
  52. Massmann J, Freeze RA (1987) Groundwater pollution from waste management sites: the interaction between risk-based engineering design and regulatory policy, I: methodology. Water Resour Res 23(2):351–367CrossRefGoogle Scholar
  53. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092CrossRefGoogle Scholar
  54. Meyer PD, Brill ED Jr (1988) A method for locating wells in a groundwater pollution monitoring network under conditions of uncertainty. Water Resour Res 24(8):1277–1282CrossRefGoogle Scholar
  55. Meyer PD, Valocchi AJ, Eheart JW (1994) Monitoring network design to provide initial detection of groundwater pollution. Water Resour Res 30:2647CrossRefGoogle Scholar
  56. Montas HJ, Mohtar RH, Hassan AE, AlKhal FA (2000) Heuristic space-time design of monitoring wells for pollutant plume characterization in stochastic flow fields. J Contam Hydrol 43(3–4):271–301CrossRefGoogle Scholar
  57. Mugunthan P, Shoemaker CA (2004) Time varying optimization for monitoring multiple pollutants under uncertain hydrogeology. Biorem J 8(3–4):129–146CrossRefGoogle Scholar
  58. Nunes LM, Cunha MC, Ribeiro L (2004a) Groundwater monitoring network optimization with redundancy reduction. J Water Resour Plan Manag 130(2):33–43CrossRefGoogle Scholar
  59. Nunes LM, Cunha MC, Ribeiro L (2004b) Optimal space-time coverage and exploration costs in groundwater monitoring networks. Environ Monit Assess 93(1–3):103–124CrossRefGoogle Scholar
  60. Prakash O, Datta B (2012) Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations. Environ Monit Assess. doi: 10.1007/s10661-012-2971-8 Google Scholar
  61. Prakash O, Datta B (2013) Multi-objective monitoring network design for efficient identification of unknown groundwater pollution sources incorporating genetic programming based monitoring. J Hydrol Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000952 Google Scholar
  62. Prakash O, Datta B (2014a) Characterization of groundwater pollution sources with unknown release time history. J Water Resour Prot 6:337–350. doi: 10.4236/jwarp.2014.64036 CrossRefGoogle Scholar
  63. Prakash O, Datta B (2014b) Optimal monitoring network design for efficient identification of unknown groundwater pollution sources. Int J GEOMATE 6(1):785–790Google Scholar
  64. Puech V (2010) Upper Macquarie groundwater model. Technical report VW04680. Office of Water, NSW Government and National Water Commission, SydneyGoogle Scholar
  65. Reed PM, Kollat JB (2012) Save now, pay later? Multi-period many-objective groundwater monitoring design given systematic model errors and uncertainty. Adv Water Resour 35:55–68CrossRefGoogle Scholar
  66. Reed PM, Minsker BS (2004) Striking the balance: long-term groundwater monitoring design for conflicting objective. J Water Resour Plan Manag 130(2):140–149CrossRefGoogle Scholar
  67. Sidauruk P, Cheng AH-D, Ouazar D (1997) Groundwater contaminant source and transport parameter identification by correlation coefficient optimization. Groundwater 36:208–214CrossRefGoogle Scholar
  68. Singh RM, Datta B (2004) Groundwater pollution source identification and simultaneous parameter estimation using pattern matching by artificial neural network. Environ Forensic 5(3):143–159CrossRefGoogle Scholar
  69. Singh RM, Datta B (2006) Identification of groundwater pollution sources using GA-based linked simulation optimization model. J Hydrol Eng 11(2):101–109CrossRefGoogle Scholar
  70. Singh RM, Datta B (2007) Artificial neural network modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data. Water Resour Manag 21(3):557–572CrossRefGoogle Scholar
  71. Singh RM, Datta B, Jain A (2004) Identification of unknown groundwater pollution sources using artificial neural networks. J Water Resour Plan Manag 130(6):506–514CrossRefGoogle Scholar
  72. Skaggs TH, Kabala ZJ (1994) Recovering the release history of a groundwater contaminant. Water Resour Res 30(1):71–79CrossRefGoogle Scholar
  73. Skaggs TH, Kabala ZJ (1995) Recovering the release history of a groundwater contaminant plume: method of quasi-reversibility. Water Resour Res 31(11):2669–2673CrossRefGoogle Scholar
  74. Sreekanth J, Datta B (2012) Genetic programming: efficient modeling tool in hydrology and groundwater management. In: New genetic programming: new approaches and successful applications. InTech, Rijeka, Croatia, pp 227–240Google Scholar
  75. Sreekanth J, Datta B (2014) Design of an optimal compliance monitoring network and feedback information for adaptive management of saltwater intrusion in coastal aquifers. J Water Resour Plan Manag 140(10):04014026CrossRefGoogle Scholar
  76. Sun NZ, Yeh WW-G (2007) Development of objective-oriented groundwater models: 2. robust experimental design. Water Resour Res 43, W02421Google Scholar
  77. Sun AY, Painter SL, Wittmeyer GW (2006a) A constrained robust least squares approach for contaminant source release history identification. Water Resour Res 42(4), W04414. doi: 10.1029/2005WR004312 Google Scholar
  78. Sun AY, Painter SL, Wittmeyer GW (2006b) A robust approach for contaminant source location and release history recovery. J Contam Hydrol 88(3, 4):29–44Google Scholar
  79. Wagner BJ (1992) Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modeling. J Hydrol 135:275–303CrossRefGoogle Scholar
  80. Woodbury AD, Ulrych TJ (1996) Minimum relative entropy inversion: theory and application to recovering the release history of a groundwater contaminant. Water Resour Res 32(9):2671–2681CrossRefGoogle Scholar
  81. Woodbury AD, Sudicky E, Ulrych TJ, Ludwig R (1998) Three-dimensional plume source reconstruction using minimum relative entropy inversion. J Contam Hydrol 32:131–158CrossRefGoogle Scholar
  82. Wu J, Zheng C, Chien CC (2005) Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. J Contam Hydrol 77:41–65CrossRefGoogle Scholar
  83. Yeh WW-G (1986) Review of parameter identification procedure in groundwater hydrology: the inverse problem. Water Resour Res 22(2):95–108CrossRefGoogle Scholar
  84. Yeh MS, Lin YP, Chang LC (2006) Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial Kriging and genetic algorithm. J Environ Geol 50:101–121CrossRefGoogle Scholar
  85. Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Contract report SERDP-99-1, US Army Engineer Research and Development Center, Vicksburg, MS, 202 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Discipline of Civil Engineering, College of Science Technology and EngineeringJames Cook UniversityTownsvilleAustralia
  2. 2.CRC for Contamination Assessment and Remediation of the EnvironmentUniversity of South AustraliaMawson LakesAustralia

Personalised recommendations