Advertisement

Hydrogeology Journal

, Volume 23, Issue 7, pp 1359–1380 | Cite as

Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region

  • Judit Mádl-Szőnyi
  • Ádám Tóth
Paper

Abstract

Application of the gravity-driven regional groundwater flow (GDRGF) concept to the hydrogeologically complex thick carbonate system of the Transdanubian Range (TR), Hungary, is justified based on the principle of hydraulic continuity. The GDRGF concept informs about basin hydraulics and groundwater as a geologic agent. It became obvious that the effect of heterogeneity and anisotropy on the flow pattern could be derived from hydraulic reactions of the aquifer system. The topography and heat as driving forces were examined by numerical simulations of flow and heat transport. Evaluation of groups of springs, in terms of related discharge phenomena and regional chloride distribution, reveals the dominance of topography-driven flow when considering flow and related chemical and temperature patterns. Moreover, heat accumulation beneath the confined part of the system also influences these patterns. The presence of cold, lukewarm and thermal springs and related wetlands, creeks, mineral precipitates, and epigenic and hypogenic caves validates the existence of GDRGF in the system. Vice versa, groups of springs reflect rock–water interaction and advective heat transport and inform about basin hydraulics. Based on these findings, a generalized conceptual GDRGF model is proposed for an unconfined and confined carbonate region. An interface was revealed close to the margin of the unconfined and confined carbonates, determined by the GDRGF and freshwater and basinal fluids involved. The application of this model provides a background to interpret manifestations of flowing groundwater in thick carbonates generally, including porosity enlargement and hydrocarbon and heat accumulation.

Keywords

Carbonate rocks Hydraulic properties Groundwater flow Geological agency Hungary 

Modèle conceptuel d’écoulements d’eau souterraine à l’échelle d’un basin pour une région carbonatée épaisse libre et captive

Résumé

L’application du concept de modélisation régionale d’écoulements d’eau souterraine contrôlé par la gravité (MRESCG) au système hydrogéologique complexe carbonaté épais de la Chaîne Transdanubienne (CT), Hongrie, est justifiée sur la base du principe de continuité hydraulique. Le concept MRESCG informe sur l’hydraulique du bassin et sur les eaux souterraines en tant qu’agent géologique. Il apparaît clair que l’effet de l’hétérogénéité et de l’anisotropie sur le mode d’écoulement peut être dérivé des réactions hydrauliques du système aquifère. La topographie et la chaleur en tant que forces motrices ont été examinées à l’aide de simulations numériques de l’écoulement et du transport de la chaleur. L’évaluation de groupes de sources, en termes de phénomènes de débits associés et de distribution régionale des chlorures, révèle la prédominance des écoulements associés à la topographie lorsque l’on considère les flux et les modes connexes de distribution de la chimie et des températures. En outre, l’accumulation de la chaleur sous la partie captive du système influence également ces modes de distribution. La présence de sources froides, tièdes et thermales et de zones humides associées, criques, précipités minéraux, et de grottes épigéniques et hypogéniques valide l’existence du MRESCG dans le système. Vice versa, les groupes de sources reflètent l’interaction eau–roche et le transport de chaleur par advection et informent sur l’hydraulique du bassin. A partir de ces résultats, un modèle conceptuel MRESCG généralisé est proposé pour une région carbonatée libre et captive. Une interface a été mise en évidence à proximité de la marge des carbonates libres et captifs, déterminée par le MESRCG, où eau douce et des fluides du bassin sont impliqués. L’application de ce modèle fournit une base pour interpréter les manifestations d’écoulements d’eau souterraine dans des carbonates épais, comprenant généralement l’élargissement de la porosité et l’accumulation d’hydrocarbure et de chaleur.

Modelo conceptual de flujo de agua subterránea a escala de cuenca para un acuífero no confinado y uno confinado en una región de potentes carbonatos

Resumen

La aplicación del concepto de flujo subterráneo regional forzado por gravedad (GDRGF) a los sistemas de potentes carbonatos potentes hidrogeológicamente complejos de las Transdanubian Range (TR), Hungría, se justifica basado en el principio de continuidad hidráulica. El concepto de GDRGF informa acerca del agua subterránea y de la hidráulica de la cuenca como un agente geológico. Es evidente que el efecto de la heterogeneidad y la anisotropía en el modelo de flujo podría ser derivada de las reacciones hidráulicas del sistema acuífero. Se examinaron la topografía y el calor como forzantes mediante simulaciones numéricas de flujo y de transporte de calor. La evaluación de los grupos de manantiales, en términos relacionados a fenómenos de descarga y la distribución de cloruro regional, revela el predominio de la forzante del flujo por la topografía al considerar los flujos y los patrones químicos y de temperatura relacionados. Por otra parte, la acumulación de calor debajo de la parte confinada del sistema también influye en estos patrones. La presencia de manantiales fríos, templados y calientes y los humedales relacionados, arroyos, precipitados de minerales, y las cuevas epigénicas y hipogénicas verifica la existencia del sistema GDRGF. Viceversa, los grupos de manantiales reflejan la interacción roca–agua y el transporte de calor advectivo e informa sobre el sistema hidráulico de la cuenca. Basado en estos resultados, se propone un modelo conceptual GDRGF generalizado para una región de carbonatos no confinada y confinada. Una interfaz se reveló cerca del margen de los carbonatos no confinados y confinadas, determinada por el GDRGF y por el agua dulce y los fluidos de la cuenca en cuestión. La aplicación de este modelo proporciona generalmente un antecedente para interpretar las manifestaciones del flujo del agua subterránea en carbonatos potentes, incluyendo la ampliación de la porosidad y la acumulación de hidrocarburos y de calor.

非承压和承压厚层碳酸盐地区流域尺度地下水流概念模型

摘要

根据水力连续性原则,对重力驱使区域地下水流概念在匈牙利Transdanubian山脉水文地质条件复杂的厚层碳酸盐系统的应用进行了调整。重力驱使区域地下水流概念就是将流域水力学和地下水作为一个地质营力。很明显,不均匀性各向异性对水流模式的影响来自于含水层系统的水力反应。通过水流和热量传输数值模拟对作为驱动力的地形和热量进行了调查。群泉相关的排泄现象和区域氯化物分布评价揭示,鉴于水流和相关的化学和温度模式,地形驱动水流占主导优势。此外,系统承压部分之下的热量积累也影响这些模式。冷泉、微温泉和热泉的出现以及相关湿地、溪流、矿物沉淀物和外成、深成洞穴的出现确认系统中存在着重力驱使区域地下水流。反过来也是如此,泉群反映了岩-水相互作用和平流热量传输,揭示了流域水力学。根据这些发现,提出了非承压和承压碳酸盐地区概化重力驱使区域地下水流概念模型。揭示了非承压和承压碳酸盐边缘附近的界面,这个界面是由重力驱使区域地下水流、淡水和所涉及到的流域流体确定的。这个模型的应用通常提供了解译这个厚层碳酸盐地层中出现流动地下水,包括孔隙度扩大及碳氢化合物和热量积累的背景。

Modelo conceitual de escoamento de água subterrânea na escala da bacia para uma região carbonácia espessa

Resumo

A modelagem do sistema carbonácio espesso e hidrogeologicamente complexo da Região da Transdanúbia (RT), na Hungria é realizada por meio da aplicação do conceito do escoamento regional de água subterrânea por gravidade (ERASG), com base no princípio da continuidade hídrica. O conceito ERASG está relacionado com a hidráulica da bacia levando-se em conta as águas subterrâneas como um forçante geológica. Obtiveram-se evidências de que o efeito da heterogeneidade e anisotropia sobre o padrão de escoamento é determinado a partir de respostas hidráulicas do sistema aquífero. O trabalho analisou o comportamento da topografia e do calor como forçantes por meio de simulações numéricas de escoamento e transporte de calor. A avaliação de grupos de fontes, em termos de fenômenos de descarga e distribuição de cloreto, revelou a predominância de forças gravitacionais no escoamento ao considerar conjuntamente ao escoamento a distribuição de constituintes e o padrão de temperaturas. De modo específico, observou-se que o calor acumulado na porção confinada do aquífero influencia tais padrões. A presença de fontes de diferentes temperaturas (frias, mornas e quentes) e corpos de água conectados a este sistema, como pântanos, riachos, precipitações minerais e cavernas epigênicas e hipogênicas validam a existência de ERASG no sistema. Por outro lado, grupos de fontes refletem a interação água–rocha e o transporte advectivo de calor e evidenciam sobre a hidráulica da bacia. Com base nestas evidências, o trabalho propõe um modelo conceitual ERASG generalizado para uma região carbonácia livres e confinadas. Próximo à margem dos carbonatos livres e confinados foi encontrada uma interface determinada pelo ERASG, a água superficial e os fluidos basais presentes. A aplicação do modelo produz um arcabouço de conhecimento suficiente para interpretar de maneira geral fenômenos de escoamento subterrâneo em carbonatos espessos, incluindo-se porosidades variáveis e acumulação de hidrocarbonetos e calor.

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the Hungarian Scientific Research Found (NK 101356) regarding those findings related to the Buda Thermal Karst of the Transdanubian Range (TR). Fruitful discussions with József Tóth, Yuan Daoxian, Nico Goldscheider, Tímea Havril, John Molson, Mihael Brenčič, Neven Kresic, Zoran Stevanovic, Pierre-Yves Jeannin, Louise Maurice, György Tóth and Alexander Klimchouk have helped the authors to formulate the content of the paper. The water-table data for the TR were provided by András Csepregi, and for the area around Hévíz, by Emőke Jocha-Edelényi; the location and distinction of origin of the epigenic and hypogenic caves were provided by Attila Gazda. Access to the Comsol Multiphysics software was given by Attila Galsa and the Department of Geophysics and Space Science at Eötvös Loránd University, Hungary; their help is highly appreciated. The technical support of Petra Bodor, Tímea Havril and Eszter Vakarcs is also gratefully acknowledged. The inspiring criticism of Weon Shik Han and three anonymous reviewers are highly appreciated. Finally the detailed comments and corrections of the manuscript by József Tóth, Andrea Mindszenty and John Molson are widely appreciated and helped to improve the quality of the paper.

References

  1. Abusaada M, Sauter M (2013) Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model. Ground Water 51(4):641–650. doi: 10.1111/j.1745-6584.2012.01003.x Google Scholar
  2. Alföldi L, Kapolyi L (eds) (2007) Bányászati karsztvízszintsüllyesztés a Dunántúli-középhegységben [Mining-dewatering in the Transdanubian Range]. Geography Institute of Hungarian Academy of Sciences, BudapestGoogle Scholar
  3. Alföldi L, Bélteky L, Böcker T, Horváth J, Korim K, Rémi R (eds) (1968) Budapest hévizei [Thermal waters of Budapest]. Hungarian Institute for Water Resources Research Budapest, BudapestGoogle Scholar
  4. Alley WM, Bair ES, Wireman M (2013) “Deep” groundwater. Groundwater 51(5):653–654CrossRefGoogle Scholar
  5. An R, Jiang XW, Wang JZ, Wan L, Wang XS, Li H (2014) A theoretical analysis of basin-scale groundwater temperature distribution. Hydrogeol J 11. doi: 10.1007/s10040-014-1197-y
  6. Austrian State Archives (2014) Historical maps of the Habsburg Empire. http://mapire.eu/en/. Accessed 10 December 2014
  7. Babushkin VD, Böcker T, Borevsky BV, Kovalewsky VS (1975) Regime of subterranean water flows in karst regions. In: Burger A, Dubertret L (eds) Hydrogeology of karstic terrains. Int Union Geol Sci Ser B 3, IAH, Paris, pp 68–78Google Scholar
  8. Back WB (1966) Hydrochemical facies and ground-water flow patterns in northern part of the Atlantic Coastal Plain. US Geol Survey Prof Pap 498A, 42 ppGoogle Scholar
  9. Batu V (1998) Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis. Wiley, New YorkGoogle Scholar
  10. Bethke CM (1989) Modeling subsurface flow in sedimentary basins. Geol Rund 78:129–154CrossRefGoogle Scholar
  11. Bjorlykke K (1993) Fluid-flow in sedimentary basins. Sed Geol 86(1–2):137–158CrossRefGoogle Scholar
  12. Bodor P, Tóth Á, Kovács J, Mádl-Szőnyi J (2014) Multidimensional data analysis of natural springs in a carbonate region. Extended Abstract, EAGE/TNO workshop: Basin Hydrodynamic Systems in Relations to Their Contained Resources, Utrecht, The Netherlands, 6–8 May 2015Google Scholar
  13. Bredehoeft JD, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resour Res 1:325–328CrossRefGoogle Scholar
  14. Brenčič M (2013) Regional groundwater flow in karstic regions of Slovenia and Istria. In: Mádl-Szőnyi J, Erőss A, Mindszenty A, Tóth Á (eds) (2013) Abstract volume of International Symposium on Hierarchical Flow Systems in Karst Regions, Budapest, September 2013, 54 ppGoogle Scholar
  15. Bretz JH (1949) Carlsbad Caverns and other caves of the Guadalupe block, New Mexico. J Geol 57:447–463CrossRefGoogle Scholar
  16. Budai T, Császár G, Csillag G, Dudko A, Koloszár L, Majoros Gy (1999) A Balaton-felvidék földtana, Térkép és magyarázó [The geology of Balaton Highland, Map and explanation]. Periodical Hungarian Geol Institute 197:257Google Scholar
  17. Cardenas BM, Jiang XW (2010) Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity. Water Resour Res 46(11), W11538. doi: 10.1029/2010WR009370 Google Scholar
  18. Chebotarev I (1955) Metamorphism of natural waters in the crust of weathering. Geochim Cosmochim Acta 8:22–48Google Scholar
  19. IPCC (Intergovernmental Panel on Climate Change) (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, CambridgeGoogle Scholar
  20. Collins AG (1975) Geochemistry of oil field waters. Elsevier, AmsterdamGoogle Scholar
  21. Csepregi A (2007) A karsztvíztermelés hatása a Dunántúli–középhegység vízháztartására [The effect of water withdrawal on the water balance of the Transdanubian Range]. In: Alföldi L, Kapolyi L (eds) Bányászati karsztvízszintsüllyesztés a Dunántúli-középhegységben [Mining-dewatering in the Transdanubian Range]. Geography Institute of Hungarian Academy of Sciences, Budapest, pp 77–112Google Scholar
  22. Cserepes L, Lenkey L (2004) Forms of hydrothermal and hydraulic flow in a homogeneous unconfined aquifer. Geophys J Int 158:785–797CrossRefGoogle Scholar
  23. Czauner B (2012) Regional hydraulic function of structural elements and low-permeability formations in fluid flow systems and hydrocarbon entrapment in eastern–southeastern Hungary. PhD Thesis, Eötvös Loránd University, Hungary, 189 ppGoogle Scholar
  24. Deming D (2002) Introduction to hydrogeology. McGraw-Hill, New YorkGoogle Scholar
  25. Déri-Takács J, Erőss A, Kovács J (2015) The chemical characterization of the thermal waters in Budapest, Hungary by using multivariate exploratory techniques. Environ Earth Sci 1–12. doi: 10.1007/s12665-014-3904-3
  26. Dombrádi E, Sokoutis D, Bada G, Cloetingh S, Horváth F (2010) Modelling recent deformation of the Pannonian lithosphere: lithospheric folding and tectonic topography. Tectonophys 484:103–118CrossRefGoogle Scholar
  27. Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional ground-water flow. Geol Soc Am Bull 84:3803–3814CrossRefGoogle Scholar
  28. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New YorkGoogle Scholar
  29. Dreybrodt W (1988) Processes in Karst systems. Springer, BerlinCrossRefGoogle Scholar
  30. Egemeier SJ (1981) Cavern development by thermal waters. Nat Speleol Soc Bull 43:31–51Google Scholar
  31. Engelen GB (2013) Hierarchically nested energy flow systems of planet earth. Proceedings of the International Symposium on Regional Groundwater Flow: Theory, Applications and Future Development, Xi’an, China, 21–23 June 2013, China Geological Survey Commission on Regional Groundwater Flow, IAH, Wallingford, UK, pp 22–25Google Scholar
  32. Engelen GB, Kloosterman FH (1996) Hydrological systems analysis: methods and applications. Kluwer, Dordrecht, The Netherlands, 152 ppGoogle Scholar
  33. Erőss A (2010) Characterization of fluids and evaluation of their effects on karst development at the Rózsadomb and Gellért Hill, Buda Thermal Karst, Hungary. PhD Thesis, Eötvös Loránd University, Hungary, 232 ppGoogle Scholar
  34. Erőss A, Mádl-Szőnyi J, Csoma ÉA (2012a) Hypogenic karst development in a hydrogeological context, Buda Thermal Karst, Budapest, Hungary. In: Maloszewski P, Witczak S, Malina G (eds) Groundwater quality sustainability. IAH Selected Papers on Hydrogeology 17. Taylor and Frances, London, pp 119–133Google Scholar
  35. Erőss A, Mádl-Szőnyi J, Surbeck H, Horváth Á, Goldscheider N, Csoma AÉ (2012b) Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. J Hydrol 426–427:124–137CrossRefGoogle Scholar
  36. Fodor L (2010) Mezozoos-kainozoos feszültségmezõk és törésrendszerek a Pannon-medence ÉNy-i részén: módszertan és szerkezeti elemzés. [Stress-fields and structural settings in the NW Pannonian Basin: methods and structural analysis]. PhD Thesis, Magyar Tudományos Akadémia, Hungary, 114 ppGoogle Scholar
  37. Fodor L (2013) A Budai-hegység felépítését szemléltető K–NY-i irányú szelvények [Geological sections across Budapest E–W]. In: Mindszenty A (ed) Budapest: földtani értékek és az ember—városgeológiai tanulmányok [Budapest: geological values and man—urbangeological studies]. Eötvös University Press, BudapestGoogle Scholar
  38. Fodor L, Koroknai B, Balogh K, Dunkl I, Horváth P (2003) Nappe position of the Transdanubian Range Unit (‘Bakony’) based on new structural and geochronological data from NE Slovenia. Föld Köz 133:535–546Google Scholar
  39. Ford DC, Williams PDW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UKGoogle Scholar
  40. Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow: 2. effect of water-table configuration and subsurface permeability variation. Water Resour Res 3(2):623–634Google Scholar
  41. Gleeson T, Manning AH (2008) Regional groundwater flow in mountainous terrain: three-dimensional simulations of topographic and hydrogeologic controls. Water Resour Res 44:W10403. doi: 10.1029/2008WR006848 Google Scholar
  42. Goderniaux P, Davy P, Bresciani E, de Dreuzy JR, Le Borgne T (2013) Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments. Water Resour Res 49:2274–2286. doi: 10.1002/wrcr.20186 CrossRefGoogle Scholar
  43. Goldscheider N, Drew D (2007) Methods in Karst hydrogeology. IAH International Contributions to Hydrogeology, Taylor & Francis, LondonGoogle Scholar
  44. Goldscheider N, Mádl-Szőnyi J, Erőss A, Schill E (2010) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18(6):1303–1318CrossRefGoogle Scholar
  45. Gunn J, Bottrell SH, Lowe DJ, Worthington SRH (2006) Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK. Hydrogeol J 14:868–881CrossRefGoogle Scholar
  46. Haas J (ed) (2001) Geology of Hungary. Eötvös University Press, BudapestGoogle Scholar
  47. Han WS, McPherson BJ (2009) Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs. Energ Conv Manag 50(10):2570–2582CrossRefGoogle Scholar
  48. Hanor JS (1987) Origin and migration of subsurface sedimentary brines. SEPM Short Course Lecture Notes, 21, SEPM, Tulsa, OK, 247 ppGoogle Scholar
  49. Hanor JS (1994) Origin of saline fluids in sedimentary basins. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geol Soc Spec Pub 78:151–174Google Scholar
  50. Harrison WJ, Summa LL (1991) Paleohydrology of the Gulf of Mexico basin. Am J Sci 291:109–176CrossRefGoogle Scholar
  51. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52: doi: 10.1002/2013RG000443
  52. Hill CA (1987) Geology of Carlsbad Cavern and other caves in the Guadalupe Mountains, New Mexico and Texas. NM Bureau Mines Min Resour Bull 117:150Google Scholar
  53. Hőriszt Gy (1971) Hydrogeology of the Nyirád bauxite region and the results of active water protection. Proceedings of the Second International Symposium of ICSOBA, vol 2, Budapest, October 6–10, 1969, pp 99–112Google Scholar
  54. Hubbert MK (1940) The theory of ground-water motion. J Geol XLVIII 8(1):785–944CrossRefGoogle Scholar
  55. Hungarian Ministry of Agriculture (2014) Cave inventory of Hungary. http://www.termeszetvedelem.hu/index.php?pg=caves. Accessed 10 December 2014
  56. Jiang XW, Wan L, Cardenas MB, Ge S, Wang XS (2010) Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying conductivity and porosity. Geophys Res Lett 37:L05403. doi: 10.1029/2010GL042307 Google Scholar
  57. Jiang XW, Wang XS, Wan L, Ge S (2011) An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity. Water Resour Res 47:W01512. doi: 10.1029/2010WR009346 Google Scholar
  58. Jocha-Edelényi E (1997) A geológiai felépítés hatása a Dunántúli-középhegységi karsztvízdepressziók visszatöltődésében [The effect of geological built up on the regression of karst water depressions]. In: A Magyar Geológiai Szolgálat 1996. évi beszámolója [Year Book of 1996 of the Hungarian Geological Institute]. Hungarian Geol. Institute, Budapest, pp 25–27Google Scholar
  59. Király L (1975) Rapport sur l’état actuel des connaissances dans le domaine des caractéres physiques des roches karstiques [Report on the current state of knowledge in the field of physical characteristics of karst rocks]. In: Burger A, Dubertret L (eds) Hydrogeology of karstic terrains. Int Union Geol Sci Ser B 3, IAH, Paris, pp 53–67Google Scholar
  60. Király L, Morel G (1976) Etude de régularisation de l’Areuse par modèle mathématique [Regularization study of Areuse by mathematical model]. Bull Centre Hydrogéol 1:19–36Google Scholar
  61. Klimchouk AB (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. Special paper no. 1, National Cave and Karst Research Institute, Carlsbad, NM, 106 ppGoogle Scholar
  62. Klimchouk A (2009) Morphogenesis of hypogenic caves. Geomorphology 106:100–117CrossRefGoogle Scholar
  63. Klimchouk AB, Ford DC (eds) (2009) Hypogene speleogenesis and Karst hydrogeology of Artesian Basins. Special paper 1, Ukrainian Institute of Speleology and Karstology, Simferopol, Ukraine, 280 ppGoogle Scholar
  64. Klimchouk AB, Tymokhina EI, Amelichev GN (2012) Speleogenetic effects of interaction between deeply derived fracture–conduit flow and intrastratal matrix flow in hypogene karst settings. Int J Speleol 41(2):37–55. doi: 10.5038/1827-806X.41.2.4 CrossRefGoogle Scholar
  65. Kovács A, Sauter M (2007) Modelling Karst hydrodynamics. In: Goldscheider N, Drew D (eds) Methods in Karst hydrogeology. International Contributions to Hydrogeology, 26, IAH, Wallingford, UK, pp 201–220Google Scholar
  66. Kovács J, Müller P (1980) A budai-hegyek hévizes tevékenységének kialakulása és nyomai [Evolution and evidence of the thermal water activity in the Buda Hills]. Karszt Barl 2:93–98Google Scholar
  67. Kresič N, Stevanovič Z (2009) Groundwater hydrology of springs: engineering, theory, management, and sustainability. Elsevier, AmsterdamGoogle Scholar
  68. LaMoreaux PE, LeGrand HE, Stringfield VT, Tolson JS (1975) Progress of knowledge about hydrology of carbonate terranes. Alabama Geol Surv Bull 94, part E, 168 ppGoogle Scholar
  69. Langmuir D (1971) The geochemistry of carbonate ground waters in central Pennsylvania. Geochim Cosmochim Acta 35:1023–1045CrossRefGoogle Scholar
  70. Lapcevic PA, Novakowski KS, Sudicky EA (1999) Groundwater flow and solute transport in fractured media. In: Delleur JW (ed) The handbook of groundwater engineering. CRC, New YorkGoogle Scholar
  71. Lenkey L, Dövényi P, Horváth F, Cloething SAPL (2002) Geothermics of the Pannonian Basin and its bearing on the neotectonics. EGU Stephan Muell Spec Publ Ser 3:29–40CrossRefGoogle Scholar
  72. Liang X, Liu Y, Jin M, Lu X, Zhang R (2010) Direct observations of complex Tóthian groundwater flow systems in the laboratory. Hydrol Proc 24:3568–3573. doi: 10.1002/hyp.7758 CrossRefGoogle Scholar
  73. Lorberer Á (1986) A Dunántúli-középhegység karsztvízföldtani és vízgazdálkodási helyzetfelmérése és döntés előkészítő értékelése [Evaluation and outline of the karst hydrogeology and water management of the Transdanubian Range]. Hungarian Water Resources Research, BudapestGoogle Scholar
  74. Mádl-Szőnyi J, Tóth Á (2014) Simulation of gravity-driven fluid flow and temperature distribution in thick carbonates. Extended Abstract for EAGE/TNO Workshop: Basin Hydrodynamic Systems in Relations to Their Contained Resources, Utrecht, The Netherlands, 6–8 May 2015Google Scholar
  75. Marklund L, Wörman A (2011) The use of spectral analysis-based exact solutions to characterize topography-controlled groundwater flow. Hydrogeol J 19(8):1531–1543. doi: 10.1007/s10040-011-0768-4 CrossRefGoogle Scholar
  76. Martinecz Á, Mádl-Szőnyi J, Havril T, Molson J, Simon Sz (2014) Numerical interpretation of groundwater flow in the Buda Thermal Karst, Hungary. Proceedings for Karst Without Boundaries International Conference and Field Seminar, Trebinje, Bosnia and Herzegovina, 11–15 June 2014, 229 ppGoogle Scholar
  77. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21CrossRefGoogle Scholar
  78. Palmer AN (2000) Hydrogeologic control of cave patterns. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis: evolution of Karst aquifers. National Speleological Society, Huntsville, AL, pp 77–90Google Scholar
  79. Papp F (1942) Budapest meleg gyógyforrásai [Thermal medicinal springs of Budapest]. A Budapesti Központi Gyógy- és Üdülőhelyi Bizottság Rheuma és Fürdőkutató Intézet Kiadványa [Book of the Central Resort Spa and Rheumatology Research Institute], BudapestGoogle Scholar
  80. Peterson RN, Viso RF, MacDonald IR, Joye SB (2013) On the utility of radium isotopes as tracers of hydrocarbon discharge. Mar Chem 156:98–107CrossRefGoogle Scholar
  81. Pohl K (1973) Procédés speciaux de prevention d’inondations souterraines et d’exploition miniére des eaux de karst emloyés en Hongrie. Travaux, du Comité International pour l’étude des bauxites, des oxydes at des hydroxides d’aluminium. [Special procedures of prevention of underground flooding and usage of minerals of karst water in Hungary. International Community for the Study of Bauxites, Oxydes and Hydroxides of Aluminium]. Yugoslavian Academy of Sciences and Arts., Zagreb, Croatia, pp 69–76Google Scholar
  82. Poros Z, Mindszenty A, Molnár F, Pironon J, Győri O, Ronchi P, Szekeres Z (2012) Imprints of hydrocarbon bearing basinal fluids on a karst system: mineralogical and fluid inclusion studies from the Buda Hills, Hungary. Int J Earth Sci 10:429–452CrossRefGoogle Scholar
  83. Royden, LH, Horváth F (eds) (1988) The Pannonian Basin: a study in basin evolution. Amer Assoc Petrol Geol Memoir 45, 394 ppGoogle Scholar
  84. Ruszkiczay-Rüdiger Z, Dunai TJ, Bada G, Fodor L, Horváth E (2005) Middle to late Pleistocene uplift rate of the Hungarian Mountain Range at the Danube Bend, (Pannonian Basin) using in situ produced 3He. Tectonophys 410:173–187CrossRefGoogle Scholar
  85. Sass I (2007) Geothermie und Grundwasser [Geothermics and groundwater]. Grundwasser 12(2):93CrossRefGoogle Scholar
  86. Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a Karst aquifer (Galklusquelle, Malm, SW Germany). Tub Geowissen Arb Part C 13:151Google Scholar
  87. Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we stimulate regional groundwater flow in a Karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276:137–158CrossRefGoogle Scholar
  88. Tari G (1994) Alpine tectonics of the Pannonian Basin. PhD Thesis, Rice University,Houston, USA, 501 ppGoogle Scholar
  89. Tari G, Horváth F (2010) A Dunántúli-középhegység helyzete és eoalpi fejlődéstörténete a Keleti-Alpok takarós rendszerébe: egy másfél évtizedes tektonikai modell időszerűsége [The position of the Transdanubian Range in the nappe structure of the Eastern Alps: the actuality of a half and a decade tectonic model]. Föld Köz 140(4):463–505Google Scholar
  90. Teutsch G, Sauter M (1998) Distributed parameter modeling approaches in karst hydrological investigations. Bull Centre Hydrogéol 16:99–109Google Scholar
  91. Thrailkiil J (1968) Chemical and hydrologic factors in the excavation of limestone caves. Geol Soc Am Bull 79(1):19–46CrossRefGoogle Scholar
  92. Tóth J (1962) A theory of groundwater motion in small drainage basins in central Alberta, Canada. J Geophys Res 67(11):4375–4387CrossRefGoogle Scholar
  93. Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812CrossRefGoogle Scholar
  94. Tóth J (1971) Groundwater discharge: a common generator of diverse geologic and morphologic phenomena. IASH Bull 16(1–3):7–24Google Scholar
  95. Tóth J (1995) Hydraulic continuity in large sedimentary basins. Hydrogeol J 3(4):4–16CrossRefGoogle Scholar
  96. Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14CrossRefGoogle Scholar
  97. Tóth J (2009a) Gravitational systems of groundwater flow theory, evaluation, utilization. Cambridge University Press, CambridgeGoogle Scholar
  98. Tóth J (2009b) Springs seen and interpreted in the context of groundwater flow-systems. GSA Annual Meeting 2009, Portland, 18–21 October 2009. Geol Soc Am Abst Prog 41(7):173Google Scholar
  99. Tóth J (2013) Groundwater flow systems: analysis, characterization and agency in Karst genesis. A1. REGFLOW and MANKARST Training course. International Symposium on Hierarchical Flow systems on Karst Regions, Budapest, 2–3 September 2013. Supp Note Session 2, pp 1–14. http://www.karstflow2013.org/?nic=training-course. Accessed July 2014
  100. Tsang CF, Niemi A (2013) Deep hydrogeology: a discussion of issues and research needs. Hydrogeol J 21:1687–1690CrossRefGoogle Scholar
  101. Turcotte DL, Schubert G (1982) Geodynamics applications of continuum physics to geological problems. Wiley, New York, 450 ppGoogle Scholar
  102. Vendel M, Kisházi P (1964) Összefüggések melegforrások és karsztvizek között a Dunántúli-középhegységben megfigyelt viszonyok alapján [Relationships between thermal springs and karst waters based on the observations in the Transdanubian Range]. Hungarian Academy of Sciences, BudapestGoogle Scholar
  103. Wellman TP, Poeter EP (2006) Evaluating uncertainty in predicting spatially variable representative elementary scales in fractured aquifers, with application to Turkey Creek Basin, Colorado. Water Resour Res 42(8):W08410. doi: 10.1029/2005WR004431 Google Scholar
  104. White WB (1988) Groundwater flow in Karstic aquifers. In: Delleur JW (ed) The handbook of groundwater engineering. CRC, Boca Raton, FLGoogle Scholar
  105. White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105CrossRefGoogle Scholar
  106. Worthington SRH (1999) A comprehensive strategy for understanding flow in carbonate aquifers. In: Palmer AN, Palmer MV, Sasowsly ID (eds) Karst modeling. Karst Waters Institute, Special Pub. 5, Charles Town, W VA, pp 30–37Google Scholar
  107. Worthington SRH, Ford DC (1995) High sulfate concentrations in limestone springs: an important factor in conduit initiation? Environ Geol 25:9–15CrossRefGoogle Scholar
  108. Worthington SRH, Davies GJ, Ford DC (2000) Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifer. In: Sasowsky ID, Wicks CM (eds) Groundwater flow and contaminant transport in carbonate aquifers. Balkema, Rotterdam, pp 113–128Google Scholar
  109. Zhang G, Taberner C, Cartwright L, Xu T (2011) Injection of supercritical CO2 into deep saline carbonate formations: predictions from geochemical modeling. SPE J 16(4):959–967. doi: 10.2118/121272-PA CrossRefGoogle Scholar
  110. Zhang R, Liang X, Jin M (2013) Tothian theory is the paradigm of modern hydrogeology. Mádl-Szőnyi J, Erőss A, Mindszenty A, Tóth Á (eds) (2013) Proceedings of the International Symposium on Hierarchical Flow Systems in Karst Regions, Budapest, September 2013, 146 ppGoogle Scholar
  111. Zijl W (1999) Scale aspects of groundwater flow and transport systems. Hydrogeol J 7:139–150CrossRefGoogle Scholar
  112. Zimmerman WBJ (2006) Multiphysics modeling with finite element methods. World Scientific, SingaporeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Physical and Applied GeologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations