Advertisement

Hydrogeology Journal

, Volume 23, Issue 6, pp 1155–1166 | Cite as

Review: Simulation-optimization models for the management and monitoring of coastal aquifers

  • J SreekanthEmail author
  • Bithin Datta
Paper

Abstract

The literature on the application of simulation-optimization approaches for management and monitoring of coastal aquifers is reviewed. Both sharp- and dispersive-interface modeling approaches have been applied in conjunction with optimization algorithms in the past to develop management solutions for saltwater intrusion. Simulation-optimization models based on sharp-interface approximation are often based on the Ghyben-Herzberg relationship and provide an efficient framework for preliminary designs of saltwater-intrusion management schemes. Models based on dispersive-interface numerical models have wider applicability but are challenged by the computational burden involved when applied in the simulation-optimization framework. The use of surrogate models to substitute the physically based model during optimization has been found to be successful in many cases. Scalability is still a challenge for the surrogate modeling approach as the computational advantage accrued is traded-off with the training time required for the surrogate models as the problem size increases. Few studies have attempted to solve stochastic coastal-aquifer management problems considering model prediction uncertainty. Approaches that have been reported in the wider groundwater management literature need to be extended and adapted to address the challenges posed by the stochastic coastal-aquifer management problem. Similarly, while abundant literature is available on simulation-optimization methods for the optimal design of groundwater monitoring networks, applications targeting coastal aquifer systems are rare. Methods to optimize compliance monitoring strategies for coastal aquifers need to be developed considering the importance of monitoring feedback information in improving the management strategies.

Keywords

Groundwater management Groundwater monitoring Optimization Numerical modelling Salt-water/fresh-water relations 

Revue: Modèles de simulation et d’optimisation pour la gestion et le suivi des aquifères côtiers

Résumé

La littérature sur l’application des approches de simulation et d’optimisation pour la gestion et le suivi des aquifères côtiers est passée en revue. Les approches de modélisation de l’interface aussi bien nette que dispersive sont appliquées conjointement aux algorithmes d’optimisation dans le passé pour développer des solutions de gestion pour les intrusions d’eau salée. Les modèles de simulation et d’optimisation basés sur une approximation de l’existence d’une interface nette sont souvent basés sur la relation de Ghyben-Herzberg et fournissent un cadre efficace pour définir de manière préliminaire des schémas de gestion de l’intrusion saline. Les approches reposant sur des modèles numériques prenant en considération une interface dispersive ont des applications plus variées mais sont mis au défi par la charge de calcul induite lorsqu’elles sont appliquées dans un cadre de simulation et d’optimisation. L’utilisation de modèles de substitution pour remplacer le modèle physique lors de l’optimisation obtient des succès dans de nombreux cas. La question du changement d’échelle est toujours un défi pour l’approche de modélisation de substitution du fait que l’avantage du calcul numérique est associé au temps de formation nécessaire pour les modèles de substitution, croissant avec la taille du problème. Peu d’études ont tenté de résoudre les problèmes de gestion des aquifères côtiers de manière stochastique en considérant la prévision de l’incertitude. Les approches qui sont rapportées dans la littérature relative à la gestion des eaux souterraines doivent être étendues et adaptées pour répondre au défis posés par le problème de gestion des aquifères côtiers par approche stochastique. De manière similaire, alors qu’une littérature abondante est disponible concernant les méthodes de simulation et d’optimisation pour la conception optimale de réseaux de suivi des eaux souterraines, des applications ciblant les aquifères côtiers sont rares. Les méthodes pour optimiser la mise en œuvre des stratégies de suivi des aquifères côtiers nécessitent d’être développées considérant l’importance des données issues des suivis pour améliorer les stratégies de gestion.

Revisión: Modelos de simulación y de optimización para la gestión y control de los acuíferos costeros

Resumen

Se realiza una revisión de la bibliografía sobre la aplicación de los enfoques de simulación y optimización para la gestión y seguimiento de los acuíferos costeros. En el pasado se aplicaron ambos enfoques de modelación para la definición y dispersión de la interfaz en conjunto con algoritmos de optimización para el desarrollo de soluciones de gestión en la intrusión de agua salada. Los modelos de simulación y de optimización a menudo están basados en la relación de Ghyben-Herzberg y proporcionan un marco eficiente para diseños preliminares de los planes de gestión de la intrusión de agua salada. Los modelos basados en modelos numéricos de interfaz dispersiva tienen una aplicabilidad más amplia, pero presentan un desafío por la carga computacional involucrada cuando se aplica en el marco de simulación y de optimización. Se encontró que el uso de modelos sustitutos para reemplazar el modelo de base física durante la optimización puede ser eficaz en muchos casos. La escalabilidad es todavía un desafío para el enfoque de la modelación sustituta como una ventaja computacional acumulada que se compensa con el tiempo de entrenamiento requerido para los modelos sustitutos al aumentar el tamaño del problema. Pocos estudios han intentado resolver los problemas de gestión costera de acuíferos considerando modelos estocásticos de predicción de la incertidumbre. Los enfoques que se han reportado en la literatura de gestión de las aguas subterráneas en general deben ampliarse y adaptarse para hacer frente a los retos que plantea el problema estocástico de la gestión costera de acuíferos. Del mismo modo, mientras está disponible una abundante literatura sobre los métodos de simulación y de optimización para el diseño óptimo de redes de monitoreo de las aguas subterráneas, las aplicaciones destinadas a los sistemas acuíferos costeros son poco frecuentes. Los métodos para optimizar las estrategias de control del cumplimiento en los acuíferos costeros deben desarrollarse teniendo en cuenta la importancia de monitorear la información de retorno para mejorar de las estrategias de gestión.

评论: 沿海含水层管理和监测模拟-最优化模型

摘要

本文论述了沿海含水层管理和监测模拟-最优化方法应用方面的文献。过去应用锋利界面和分散界面模拟方法,结合最优化算法开发了海水入侵的管理解决方案。基于锋利界面近似法的模拟-最优化模型通常以Ghyben-Herzberg的相互关系为基础,为海水入侵管理方案的初步设计提供了有效率的框架。基于分散-界面数值模型的模型具有更广的适用性,但在应用在模拟-最优化框架中受到了有关计算负担的挑战。发现在最优化期间使用代用模型替代物理模型在很多情况下很成功。随着计算题规模大小的增加,应计的计算优势与代用模型所需的培训时间交换,可扩展性对于代用模拟方法仍然是一个挑战。考虑到模型预测的不确定性,极少的研究试图解决随机的沿海含水层管理问题。众多地下水管理文献中记载的方法需要扩充和完善,以注重随机的沿海含水层管理问题提出的挑战。同样,假如地下水监测网络最优设计模拟-最优化模型方面有丰富的文献,针对沿海含水层系统的应用就很少。考虑到改善管理战略中监测反馈信息的重要性,需要开发最优化沿海含水层适合的监测战略的方法。

Revisão: Modelos de otimização-simulação para a gerenciamento e monitoramento de aquíferos costeiros

Resumo

A literatura sobre a aplicação de abordagens de otimização-simulação para o gerenciamento e o monitoramento de aquíferos costeiros é revisada. No passado, ambas abordagens de modelagem, de interface abrupta e dispersiva, foram adotadas em conjunto com algoritmos de otimização para desenvolver soluções de gerenciamento para a intrusão de água salina. Os modelos de otimização-simulação baseados na aproximação de interface abrupta são frequentemente baseados na relação Ghyben-Herzberg e fornecem uma estrutura eficiente para designs preliminares de esquemas de gerenciamento da intrusão de água salina. Modelos baseados em modelos numéricos de interface dispersiva possuem aplicabilidade mais ampla, porém são colocados a prova pela carga computacional envolvida quando aplicados na estrutura de otimização-simulação. A utilização de modelos substitutos para substituir o modelo fisicamente embasado durante a otimização obteve sucesso em muitos casos. A expansividade se mantem um desafio para a abordagem de modelagem substituta, assim como a vantagem computacional ampliada é escolhida de acordo com o tempo de treinamento requisitado para os modelos substitutos e com o aumento do tamanho do problema. Alguns estudos tentaram resolver problemas estocásticos de gerenciamento de aquíferos costeiros considerando a incerteza predita pelo modelo. Abordagens que têm sido amplamente relatadas na literatura sobre o gerenciamento de água subterrânea precisam ser expandidas e adaptadas para dirigirem-se aos desafios colocados pelo problema de gerenciamento estocástico de aquíferos costeiros. Similarmente, enquanto está disponível uma literatura abundante em métodos de otimização-simulação para o design ótimo de redes de monitoramento de água subterrânea, aplicações mirando aquíferos costeiros são raras. Métodos que otimizem estratégias de monitoramento de conformidades para aquíferos costeiros precisam ser desenvolvidos considerando a importância do retorno das informações do monitoramento na melhoria de estratégias de gerenciamento.

Notes

Acknowledgements

The authors are thankful to the editors and reviewers’ contributions which helped improve the final presentation of this paper.

References

  1. Abd-Elhamid HF, Javadi AA (2011) A cost-effective method to control seawater intrusion in coastal aquifers. Water Resour Manag 25:2755–2780Google Scholar
  2. Aguado E, Remson I (1974) Ground-water hydraulics in aquifer management. J Hydraul Div 100(1):103–118Google Scholar
  3. Ahlfeld DP, Pinder GF (1992) A fast and accurate method for solving subsurface contaminant transport problems with a single uncertain parameter. Adv Water Resour 15:143–150Google Scholar
  4. Alley WM, Aguado E, Remson I (1976) Aquifer management under transient and steady-state conditions. JAWRA J Am Water Resour Assoc 12(5):963–973Google Scholar
  5. Aly AH, Peralta RC (1999) Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm. Water Resour Res 35:2523–2532Google Scholar
  6. Ammar K, Khalil A, Mckee M, Kaluarachchi J (2008) Bayesian deduction for redundancy detection in groundwater quality monitoring networks. Water Resour Res 44(8). doi: 10.1029/2006WR005616
  7. Asefa T, Kemblowski MW, Urroz G, Mckee M, Khalil A (2004) Support vectors-based groundwater head observation networks design. Water Resour Res 40(11). doi: 10.1029/2004WR003304
  8. Asefa T, Kemblowski M, Lall U, Urroz G (2005) Support vector machines for nonlinear state space reconstruction: application to the Great Salt Lake time series. Water Resour Res 41(12). doi: 10.1029/2004WR003785
  9. Ataie-Ashtiani B, Ketabchi H (2011) Elitist continuous ant colony optimization algorithm for optimal management of coastal aquifers. Water Resour Manag 25:165–190Google Scholar
  10. Ataie-Ashtiani B, Ketabchi H, Rajabi MM (2013) Optimal management of a freshwater lens in a small island using surrogate models and evolutionary algorithms. J Hydrol Eng 19(2):339–354Google Scholar
  11. Barlow PM, Reichard EG (2010) Saltwater intrusion in coastal regions of North America. Hydrogeol J 18(1):247–260Google Scholar
  12. Bashi-Azghadi SN, Kerachian R (2010) Locating monitoring wells in groundwater systems using embedded optimization and simulation models. Sci Total Environ 408:2189–2198Google Scholar
  13. Bau DA, Mayer AS (2008) Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume distribution. J Contam Hydrol 100:30–46Google Scholar
  14. Bayer P, Buerger CM, Finkel M (2008) Computationally efficient stochastic optimization using multiple realizations. Adv Water Resour 31:399–417Google Scholar
  15. Bayer P, de Paly M, Bürger CM (2010) Optimization of high‐reliability‐based hydrological design problems by robust automatic sampling of critical model realizations. Water Resour Res 46(5). doi: 10.1029/2009WR008081
  16. Bear J, Cheng AH-D, Sorek S, Ouazar D, Herrera I (1999) Seawater intrusion in coastal aquifers: concepts, methods and practices. Kluwer, LondonGoogle Scholar
  17. Behzadian K, Kapelan Z, Savic D, Ardeshir A (2009) Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks. Environ Model Softw 24:530–541Google Scholar
  18. Benhachmi MK, Ouazar D, Naji A, Cheng AHD, EL Harrouni K (2003) Chance-constrained pumping optimization in saltwater intruded aquifers by simple genetic algorithm: stochastic model. In: Marin L, Cheng AH-D (eds) Proceedings of 2nd International Conference on Saltwater Intrusion and Coastal Aquifers: Monitoring, Modeling, and Management. Merida, Mexico, 30 March–2 April 2003Google Scholar
  19. Bhattacharjya R, Datta B (2005) Optimal management of coastal aquifers using linked simulation optimization approach. Water Resour Manag 19:295–320Google Scholar
  20. Bhattacharjya RK, Datta B (2009) ANN-GA-based model for multiple objective management of coastal aquifers. J Water Resour Plan Manag 135:314–322Google Scholar
  21. Bhattacharjya RK, Datta B, Satish MG (2007) Artificial neural networks approximation of density dependent saltwater intrusion process in coastal aquifers. J Hydrol Eng 12:273–282Google Scholar
  22. Bierkens MFP, Knotters M, Hoogland T (2001) Space-time modeling of water table depth using a regionalized time series model and the Kalman filter. Water Resour Res 37:1277–1290Google Scholar
  23. Castelletti A, Pianosi F, Soncini‐Sessa R, Antenucci JP (2010) A multiobjective response surface approach for improved water quality planning in lakes and reservoirs. Water Resour Res 46:W06502. doi: 10.1029/2009WR008389
  24. Chadalavada S, Datta B (2008) Dynamic optimal monitoring network design for transient transport of pollutants in groundwater aquifers. Water Resour Manag 22:651–670Google Scholar
  25. Chadalavada S, Datta B, Naidu R (2011) Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site. Environ Monit Assess 173:929–940Google Scholar
  26. Chan N (1993) Robustness of the multiple realization method for stochastic hydraulic aquifer management. Water Resour Res 29:3159–3167Google Scholar
  27. Cheng AHD, Halhal D, Naji A, Ouazar D (2000) Pumping optimization in saltwater-intruded coastal aquifers. Water Resour Res 36:2155–2165Google Scholar
  28. Cheng WC, Putti M, Kendall DR, Yeh WWG (2011) A real‐time groundwater management model using data assimilation. Water Resour Res 47:W06528. doi: 10.1029/2010WR009770
  29. Creel L (2003) Ripple effects: population and coastal regions. Population Reference Bureau, Washington, DC, pp 1–7Google Scholar
  30. Culver TB, Shoemaker CA (1993) Optimal control for groundwater remediation by differential dynamic programming with Quasi‐Newton approximations. Water Resour Res 29(4):823–831Google Scholar
  31. Dagan G, Zeitoun DG (1998a) Free-surface flow toward a well and interface upconing in stratified aquifers of random conductivity. Water Resour Res 34:3191–3196Google Scholar
  32. Dagan G, Zeitoun DG (1998b) Seawater–freshwater interface in a stratified aquifer of random permeability distribution. J Contam Hydrol 29:185–203Google Scholar
  33. Das A, Datta B (1999a) Development of management models for sustainable use of coastal aquifers. J Irrig Drain Eng 125:112–121Google Scholar
  34. Das A, Datta B (1999b) Development of multiobjective management models for coastal aquifers. J Water Resour Plan Manag 125:76–87Google Scholar
  35. Datta B, Dhiman SD (1996) Chance-constrained optimal monitoring network design for pollutants in ground water. J Water Resour Plann Manag 122:180–188Google Scholar
  36. Deininger RA (1970) Systems analysis of water supply systems. J Am Water Resour Assoc 6:573–579. doi: 10.1111/j.1752-1688.1970.tb00518.x
  37. Dhar A, Datta B (2007) Multiobjective design of dynamic monitoring networks for detection of groundwater pollution. J Water Resour Plan Manag 133:329–338Google Scholar
  38. Dhar A, Datta B (2009a) Saltwater intrusion management of coastal aquifers, I: linked simulation-optimization. J Hydrol Eng 14:1263–1272Google Scholar
  39. Dhar A, Datta B (2009b) Saltwater intrusion management of coastal aquifers, II: operation uncertainty and monitoring. J Hydrol Eng 14:1273–1282Google Scholar
  40. Dhar A, Datta B (2009c) Global optimal design of ground water monitoring network using embedded kriging. Ground Water 47:806–815Google Scholar
  41. di Pierro F, Khu ST, Savić D, Berardi L (2009) Efficient multi-objective optimal design of water distribution networks on a budget of simulations using hybrid algorithms. Environ Model Softw 24(2):202–213Google Scholar
  42. Dokou Z, Pinder GF (2009) Optimal search strategy for the definition of a DNAPL source. J Hydrol 376:542–556Google Scholar
  43. Emch PG, Yeh WWG (1998) Management model for conjunctive use of coastal surface water and ground water. J Water Resour Plan Manag 124:129–139Google Scholar
  44. Essaid HI (1990) A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: model development and application. Water Resour Res 26(7):1431–1454Google Scholar
  45. Feyen L, Gorelick SM (2004) Reliable groundwater management in hydroecologically sensitive areas. Water Resour Res 40(7). doi: 10.1029/2003WR003003
  46. Feyen L, Gorelick SM (2005) Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. Water Resour Res 41:13Google Scholar
  47. Finney BA, Samsuhadi, Willis R (1992) Quasi-three-dimensional optimization model of Jakarta basin. J Water Resour Plan Manag 118:18–31Google Scholar
  48. Galeati G, Gambolati G, Neuman SP (1992) Coupled and partially coupled Eulerian‐Lagrangian model of freshwater–seawater mixing. Water Resour Res 28(1):149–165Google Scholar
  49. Gaur S, Chahar BR, Graillot D (2011) Analytic elements method and particle swarm optimization based simulation–optimization model for groundwater management. J Hydrol 402(3):217–227Google Scholar
  50. Gorelick SM (1983) A review of distributed parameter groundwater-management modeling methods. Water Resour Res 19:305–319Google Scholar
  51. Graham W, McLaughlin D (1989a) Stochastic-analysis of nonstationary subsurface solute transport, 1: unconditional moments. Water Resour Res 25:215–232Google Scholar
  52. Graham W, McLaughlin D (1989b) Stochastic-analysis of nonstationary subsurface solute transport, 2: conditional moments. Water Resour Res 25:2331–2355Google Scholar
  53. Hallaji K, Yazicigil H (1996) Optimal management of a coastal aquifer in southern Turkey. J Water Resour Plan Manag 122:233–244Google Scholar
  54. He L, Huang GH, Lu HW (2010a) A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design, part I: model development. J Hazard Mater 176:521–526Google Scholar
  55. He L, Huang GH, Lu HW (2010b) A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design, part II: model application. J Hazard Mater 176:527–534Google Scholar
  56. Heidari M (1982) Application of linear system’s theory and linear programming to groundwater management in Kansas. Water Resour Bull 186:1003–1012Google Scholar
  57. Hemker T, Fowler KR, Farthing MW, von Stryk O (2008) A mixed-integer simulation-based optimization approach with surrogate functions in water resources management. Optim Eng 9(4):341–360Google Scholar
  58. Herrera GS, Pinder GF (2005) Space-time optimization of groundwater quality sampling networks. Water Resour Res 41:W12407. doi: 10.1029/2004WR003626
  59. Holzbecher E (1998) Modeling density-driven flow in porous media. Springer, BerlinGoogle Scholar
  60. Hudak PF, Loaiciga HA (1992) A location modeling approach for groundwater monitoring network augmentation. Water Resour Res 28:643–649Google Scholar
  61. Hudak PF, Loaiciga HA (1993) An optimization method for monitoring network design in multilayered groundwater-flow systems. Water Resour Res 29:2835–2845Google Scholar
  62. Huyakorn PS, Andersen PF, Mercer JW, White HO (1987) Saltwater intrusion in aquifers: development and testing of a three‐dimensional finite element model. Water Resour Res 23(2):293–312Google Scholar
  63. Katsifarakis KL, Petala Z (2006) Combining genetic algorithms and boundary elements to optimize coastal aquifers’ management. J Hydrol 327:200–207Google Scholar
  64. Kollat JB, Reed PM (2007) A computational scaling analysis of multiobjective evolutionary algorithms in long-term groundwater monitoring applications. Adv Water Resour 30:408–419Google Scholar
  65. Kollat JB, Reed PM, Kasprzyk JR (2008) A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjective monitoring network design problems. Adv Water Resour 31:828–845Google Scholar
  66. Kollat JB, Reed PM, Maxwell RM (2011) Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics. Water Resour Res 47:W02529. doi: 10.1029/2010WR009194
  67. Kourakos G, Mantoglou A (2008) Remediation of heterogeneous aquifers based on multiobjective optimization and adaptive determination of critical realizations. Water Resour Res 44, W12408Google Scholar
  68. Kourakos G, Mantoglou A (2009) Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models. Adv Water Resour 32:507–521Google Scholar
  69. Kourakos G, Mantoglou A (2013) Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management. J Hydrol 479:13–23Google Scholar
  70. Koussis AD, Georgopoulou E, Kotronarou A, Mazi K, Restrepo P, Destouni G et al (2010) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus. Hydrol Sci J 55(7):1234–1245Google Scholar
  71. Koussis AD, Georgopoulou E, Kotronarou A, Lalas DP, Restrepo P, Destouni G et al (2010) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: general framework. Hydrol Sci J 55(7):1217–1233Google Scholar
  72. Koza JR (1994) Genetic programming as a means for programming computers by natural-selection. Stat Comput 4:87–112Google Scholar
  73. Loaiciga HA, Charbeneau RJ, Everett LG, Fogg GE, Hobbs BF, Rouhani S (1992) Review of groundwater quality monitoring network design. J Hydraul Eng 118:11–37Google Scholar
  74. Maddock T (1974) The operation of a stream‐aquifer system under stochastic demands. Water Resour Res 10(1):1–10Google Scholar
  75. Maddock III T (1972) A ground-water planning model: a basis for a data collection network. Paper presented at the international symposium on uncertainties in hydrologic and water resource systems, Int. Assoc. Sci. Hydrol., University of Arizona, Tuscon, December 1972Google Scholar
  76. Mahar PS, Datta B (1997) Optimal monitoring network and ground-water-pollution source identification. J Water Resour Plann Manag 123:199–207Google Scholar
  77. Mantoglou A (2003) Pumping management of coastal aquifers using analytical models of saltwater intrusion. Water Resour Res 39:12Google Scholar
  78. Mantoglou A, Kourakos G (2007) Optimal groundwater remediation under uncertainty using multi-objective optimization. Water Resour Manag 21(5):835–847Google Scholar
  79. Mantoglou A, Papantoniou M (2008) Optimal design of pumping networks in coastal aquifers using sharp interface models. J Hydrol 361:52–63Google Scholar
  80. Mantoglou A, Papantoniou M, Giannoulopoulos P (2004) Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms. J Hydrol 297:209–228Google Scholar
  81. Masoumi F, Kerachian R (2010) Optimal redesign of groundwater quality monitoring networks: a case study. Environ Monit Assess 161:247–257Google Scholar
  82. Massmann J, Freeze RA (1987a) Groundwater contamination from waste management sites: the interaction between risk-based engineering design and regulatory policy, 1—methodology. Water Resour Res 23:351–367Google Scholar
  83. Massmann J, Freeze RA (1987b) Groundwater contamination from waste management sites: the interaction between risk-based engineering design and regulatory policy, 2—results. Water Resour Res 23:368–380Google Scholar
  84. McKinney DC, Loucks DP (1992) Network design for predicting groundwater contamination. Water Resour Res 28:133–147Google Scholar
  85. McPhee J, Yeh WWG (2006) Experimental design for groundwater modeling and management. Water Resour Res 42:13Google Scholar
  86. McPhee J, Yeh WWG (2008) Groundwater management using model reduction via empirical orthogonal functions. J Water Resour Plan Manag 134(2):161–170Google Scholar
  87. Melloul AJ, Goldenberg LC (1997) Monitoring of seawater intrusion in coastal aquifers: basics and local concerns. J Environ Manag 51:73–86Google Scholar
  88. Meyer PD, Brill ED (1988) A method for locating wells in a groundwater monitoring network under conditions of uncertainty. Water Resour Res 24:1277–1282Google Scholar
  89. Meyer PD, Valocchi AJ, Ashby SF, Saylor PE (1989) A numerical investigation of the conjugate-gradient method as applied to three-dimensional groundwater-flow problems in randomly heterogeneous porous-media. Water Resour Res 25:1440–1446Google Scholar
  90. Montas HJ, Mohtar RH, Hassan AE, Alkhal FA (2000) Heuristic space-time design of monitoring wells for contaminant plume characterization in stochastic flow fields. J Contam Hydrol 43:271–301Google Scholar
  91. Morgan DR, Eheart JW, Valocchi AJ (1993) Aquifer remediation design under uncertainty using a new chance constrained programming technique. Water Resour Res 29:551–561Google Scholar
  92. Mugunthan P, Shoemaker CA (2006) Assessing the impacts of parameter uncertainty for computationally expensive groundwater models. Water Resour Res 42:W10428. doi: 10.1029/2005WR004640
  93. Mugunthan P, Shoemaker CA, Regis RG (2005) Comparison of function approximation, heuristic, and derivative‐based methods for automatic calibration of computationally expensive groundwater bioremediation models. Water Resour Res 41:W11427. doi: 10.1029/2005WR004134
  94. Naji A, Cheng ABD, Ouazar D (1998) BEM solution of stochastic seawater intrusion problems. Eng Anal Bound Elem 23:529–537Google Scholar
  95. Nikolos IK, Stergiadi M, Papadopoulou MP, Karatzas GP (2008) Artificial neural networks as an alternative approach to groundwater numerical modeling and environmental design. Hydrol Process 22:3337–3348Google Scholar
  96. Nunes LM, Cunha MC, Ribeiro L (2004a) Groundwater monitoring network optimization with redundancy reduction. J Water Resour Plan Manag 130:33–43Google Scholar
  97. Nunes LM, Cunha MC, Ribeiro L (2004b) Optimal space-time coverage and exploration costs in groundwater monitoring networks. Environ Monit Assess 93:103–124Google Scholar
  98. Nunes LM, Paralta E, Cunha MC, Ribeiro L (2004c) Groundwater nitrate monitoring network optimization with missing data. Water Resour Res 40, W02406Google Scholar
  99. Papadopoulou MP (2011) Optimization approaches for the control of seawater intrusion and its environmental impacts in coastal environment. Pac J Optim 7:479–502Google Scholar
  100. Papadopoulou MP, Nikolos IK, Karatzas GP (2010) Computational benefits using artificial intelligent methodologies for the solution of an environmental design problem: saltwater intrusion. Water Sci Technol 62:1479–1490Google Scholar
  101. Park CH, Aral MM (2004) Multi-objective optimization of pumping rates and well placement in coastal aquifers. J Hydrol 290:80–99Google Scholar
  102. Parker J, Kim U, Kitanidis PK, Cardiff M, Liu XY (2010) Stochastic cost optimization of multistrategy DNAPL site remediation. Ground Water Monit Rem 30:65–78Google Scholar
  103. Prieto C, Kotronarou A, Destouni G (2006) The influence of temporal hydrological randomness on seawater intrusion in coastal aquifers. J Hydrol 330(1):285–300Google Scholar
  104. Putti M, Paniconi C (1995) Picard and Newton linearization for the coupled model for saltwater intrusion in aquifers. Adv Water Resour 18(3):159–170Google Scholar
  105. Qahman K, Larabi A, Ouazar D, Naji A, Cheng AHD (2005) Optimal and sustainable extraction of groundwater in coastal aquifers. Stoch Env Res Risk A 19:99–110Google Scholar
  106. Qin XS, Huang GH (2009) Characterizing uncertainties associated with contaminant transport modeling through a coupled fuzzy-stochastic approach. Water Air Soil Pollut 197:331–348Google Scholar
  107. Rajabi MM, Ataie-Ashtiani B (2014) Sampling efficiency in Monte Carlo based uncertainty propagation strategies: application in seawater intrusion simulations. Adv Water Resour 67:46–64Google Scholar
  108. Ranjithan S, Eheart JW, Garrett JH (1993) Neural network based screening for groundwater reclamation under uncertainty. Water Resour Res 29:563–574Google Scholar
  109. Rao SVN, Thandaveswara BS, Bhallamudi SM, Srivivasulu V (2003) Optimal groundwater management in deltaic regions using simulated annealing and neural networks. Water Resour Manag 17:409–428Google Scholar
  110. Rao SVN, Bhallamudi SM, Thandaveswara BS, Mishra GC (2004a) Conjunctive use of surface and groundwater for coastal and deltaic systems. J Water Resour Plan Manag 130:255–267Google Scholar
  111. Rao SVN, Sreenivasulu V, Bhallamudi SM, Thandaveswara BS, Sudheer KP (2004b) Planning groundwater development in coastal aquifers. Hydrol Sci J 49:155–170Google Scholar
  112. Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in water resources. Water Resour Res 48:W07401. doi: 10.1029/2011WR011527
  113. Reed PM, Minsker BS (2004) Striking the balance: long-term groundwater monitoring design for conflicting objectives. J Water Resour Plan Manag 130:140–149Google Scholar
  114. Reed P, Minsker B, Valocchi AJ (2000) Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation. Water Resour Res 36:3731–3741Google Scholar
  115. Reed P, Minsker BS, Goldberg DE (2003) Simplifying multiobjective optimization: an automated design methodology for the nondominated sorted genetic algorithm-II. Water Resour Res 39(7):1196Google Scholar
  116. Reed PM, Hadka D, Herman JD, Kasprzyk JR, Kollat JB (2013) Evolutionary multiobjective optimization in water resources: the past, present, and future. Adv Water Resour 51:438–456Google Scholar
  117. Regis RG, Shoemaker CA (2004) Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Trans Evol Comput 8(5):490–505Google Scholar
  118. Regis RG, Shoemaker CA (2007) A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J Comput 19(4):497–509Google Scholar
  119. Regis RG, Shoemaker CA (2009) Parallel stochastic global optimization using radial basis functions. INFORMS J Comput 21(3):411–426Google Scholar
  120. Reilly TE, Goodman AS (1985) Quantitative-analysis of saltwater fresh-water relationships in groundwater systems: a historical perspective. J Hydrol 80:125–160Google Scholar
  121. Rogers LL, Dowla FU, Johnson VM (1995) Optimal field-scale groundwater remediation using neural networks and the genetic algorithm. Environ Sci Technol 29:1145–1155Google Scholar
  122. Rosenwald GW, Green DW (1974) A method for determining the optimum location of wells in a reservoir using mixed-integer programming. Soc Petrol Eng J 14(01):44–54Google Scholar
  123. Rouhani S (1985) Variance reduction analysis. Water Resour Res 21:837–846Google Scholar
  124. Ruiz-Cardenas R, Ferreira MAR, Schmidt AM (2010) Stochastic search algorithms for optimal design of monitoring networks. Environmetrics 21:102–112Google Scholar
  125. Sanford WE, Pope JP (2010) Current challenges using models to forecast seawater intrusion: lessons from the Eastern Shore of Virginia, USA. Hydrogeol J 18(1):73–93Google Scholar
  126. Sedki A, Ouazar D (2011) Simulation-optimization modeling for sustainable groundwater development: a Moroccan coastal aquifer case study. Water Resour Manag 25:2855–2875Google Scholar
  127. Shi L, Cui L, Park N, Huyakorn PS (2011) Applicability of a sharp-interface model for estimating steady-state salinity at pumping wells-validation against sand tank experiments. J Contam Hydrol 124:35–42Google Scholar
  128. Singh A, Minsker BS (2008) Uncertainty-based multiobjective optimization of groundwater remediation design. Water Resour Res 44, W02404Google Scholar
  129. Sorek S, Pinder GF (1999) Survey of computer codes and case histories. In: Seawater intrusion coast aquifers: concepts methods practices. Theory and Applications of Transport in Porous Media, series 14, Springer, Heidelberg, Germany, pp 399–461Google Scholar
  130. Sreekanth J (2012) Integrated multi-objective management of saltwater intrusion in coastal aquifers using simulation-optimization and monitoring feedback information. PhD Thesis, James Cook University, Townsville, AustraliaGoogle Scholar
  131. Sreekanth J, Datta B (2010) Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. J Hydrol 393:245–256Google Scholar
  132. Sreekanth J, Datta B (2011a) Comparative evaluation of genetic programming and neural network as potential surrogate models for coastal aquifer management. Water Resour Manag 25:3201–3218Google Scholar
  133. Sreekanth J, Datta B (2011b) Coupled simulation-optimization model for coastal aquifer management using genetic programming-based ensemble surrogate models and multiple-realization optimization. Water Resour Res 47:W04516. doi: 10.1029/2010WR009683
  134. Sreekanth J, Datta B (2011c) Optimal combined operation of production and barrier wells for the control of saltwater intrusion in coastal groundwater well fields. Desalin Water Treat 32(1–3):72–78Google Scholar
  135. Sreekanth J, Datta B (2013) Design of an optimal compliance monitoring network and feedback information for adaptive management of saltwater intrusion in coastal aquifers. J Water Resour Plan Manag 140(10), 040140426Google Scholar
  136. Sreekanth J, Datta B (2014) Stochastic and robust multi-objective optimal management of pumping from coastal aquifers under parameter uncertainty. Water Resour Manag 28(7):2005–2019Google Scholar
  137. Sreekanth J, Datta B, Mohapatra PK (2012) Optimal short-term reservoir operation with integrated long-term goals. Water Resour Manag 26(10):2833–2850Google Scholar
  138. Storck P, Eheart JW, Valocchi AJ (1997) A method for the optimal location of monitoring wells for detection of groundwater contamination in three-dimensional heterogeneous aquifers. Water Resour Res 33:2081–2088Google Scholar
  139. Strack ODL (1976) Single-potential solution for regional interface problems in coastal aquifers. Water Resour Res 12:1165–1174Google Scholar
  140. Tiedeman C, Gorelick SM (1993) Analysis of uncertainty in optimal groundwater contaminant capture design. Water Resour Res 29:2139–2153Google Scholar
  141. Van Geer FC, Testroet CBM, Zhou YX (1991) Using Kalman filtering to improve and quantify the uncertainty of numerical groundwater simulations 1: the role of system noise and its calibration. Water Resour Res 27:1987–1994Google Scholar
  142. Wagner BJ, Gorelick SM (1987) Optimal groundwater quality management under parameter uncertainty. Water Resour Res 23:1162–1174Google Scholar
  143. Wagner BJ, Gorelick SM (1989) Reliable aquifer remediation in the presence of spatially-variable hydraulic conductivity: from data to design. Water Resour Res 25:2211–2225Google Scholar
  144. Werner AD, Bakker M, Post VE, Vandenbohede A, Lu C, Ataie-Ashtiani B et al (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26Google Scholar
  145. Willis R (1983) A unified approach to regional groundwater management. In: Rosenshein JS, Benneth GD (eds) Groundwater hydraulics. Water resources monograph series. AGU, Washington, DC, pp 392–407Google Scholar
  146. Willis R, Finney BA (1988) Planning model for optimal control of saltwater intrusion. J Water Resour Plan Manag 114(2):163–178Google Scholar
  147. Wu JF, Zheng CM, Chien CC (2005) Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. J Contam Hydrol 77:41–65Google Scholar
  148. Wu JF, Zheng CM, Chien CC, Zheng L (2006) A comparative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty. Adv Water Resour 29:899–911Google Scholar
  149. Yan S, Minsker B (2010) Applying dynamic surrogate models in noisy genetic algorithms to optimize groundwater remediation designs. J Water Resour Plan Manag 137(3):284–292Google Scholar
  150. Zhang YQ, Pinder GF, Herrera GS (2005) Least cost design of groundwater quality monitoring networks. Water Resour Res 41:W08412. doi: 10.1029/2005WR003936

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CSIRO Land and Water FlagshipDutton parkAustralia
  2. 2.School of Engineering and Physical SciencesJames Cook UniversityTownsvilleAustralia
  3. 3.Centre for Tropical Water and Aquatic Ecosystem ResearchJames Cook UniversityTownsvilleAustralia
  4. 4.CRC for the Contamination Assessment and Remediation of the EnvironmentMawson LakesAustralia

Personalised recommendations