Hydrogeology Journal

, Volume 23, Issue 5, pp 961–969 | Cite as

Evaluation of remotely sensed data for estimating recharge to an outcrop zone of the Guarani Aquifer System (South America)

  • Murilo Lucas
  • Paulo T. S. Oliveira
  • Davi C. D. Melo
  • Edson Wendland
Report

Abstract

The Guarani Aquifer System (GAS) is the largest transboundary groundwater reservoir in South America, yet recharge in the GAS outcrop zones is one of the least known hydrological variables. The objective of this study was to assess the suitability of using remote sensing data in the water-budget equation for estimating recharge inter-annual patterns in a representative GAS outcropping area. Data were obtained from remotely sensed estimates of precipitation (P) and evapotranspiration (ET) using TRMM 3B42 V7 and MOD16, respectively, in the Onça Creek watershed in Brazil over the 2004–2012 period. This is an upland flat watershed (slope steepness <1 %) dominated by sandy soils and representative of the GAS outcrop zones. The remote sensing approach was compared to the water-table fluctuation (WTF) method and another water-budget equation using ground-based measurements. On a monthly basis, the TRMM P estimate showed significant agreement with the ground-based P data (r = 0.93 and RMSE = 41 mm). Mean(±SD) satellite-based recharge (Rsat) was 537(±224) mm year−1. Mean ground-based recharge using the water-budget (Rgr) and the WTF (Rwtf) methods were 469 mm year−1 and 311(±75) mm year−1, respectively. Results show that 440 mm year−1 is a mean (between Rsat, Rgr and Rwtf) recharge for the study area over the 2004–2012 period. The latter mean recharge estimate is about 29 % of the mean historical P (1,514 mm year−1). These results are useful for future studies on assessing recharge in the GAS outcrop zones where data are scarce or nonexistent.

Keywords

Transboundary aquifer Groundwater recharge/water budget Remote sensing Brazil 

Evaluation de données de télédétection pour estimer la recharge d’une zone d’affleurement du Système Aquifère de Guarani (Amérique du Sud)

Résumé

Le Système Aquifére de Guarani (GAS) est le plus grand réservoir aquifère transfrontalier d’Amérique du Sud, mais la recharge dans la zone affleurante du GAS est l’une des variables hydrologiques les moins connues. L’objectif de cette étude a été d’évaluer la pertinence de l’usage de données de télédétection dans le calcul du bilan hydrique pour estimer les modes de recharge inter-annuelle dans une zone affleurante représentative du GAS. Les données ont été obtenues à partir d’estimations de la précipitation (P) et de l’évapotranspiration (ET) par télédétection, utilisant respectivement les données TRMM 3B42 V7 et MOD16, du bassin versant de Onça Creek, au Brésil, pour la période 2004–2012. C’est un bassin versant constitué de hauts plateaux (pentes < 1 %) dominé par des sols sableux représentatifs des zones d’affleurement du GAS. L’approche par télédétection a été comparée à la méthode basée sur les fluctuations du niveau de la nappe, et une autre équation du bilan hydrique utilisant des mesures de terrain. A un pas de temps mensuel, l’estimation de P par les données de TRMM a montré une bonne corrélation avec les données de terrain—r = 0,93 et σ (erreur moyenne quadratique) = 41 mm. La recharge moyenne (Rsat)(± écart type), basée sur l’imagerie satellite, a été de 537(±224) mm an–1. Les recharges moyennes basées sur les mesures de terrain, utilisant les méthodes du bilan hydrique (Rter) et des fluctuations piézométriques (Rfp) ont été respectivement de 469 mm an–1 et de 311(±75) mm an–1. Les résultats montrent que la valeur de 440 mm an–1 correspond à une moyenne (entre Rsat, Rter and Rfp) pour le secteur d’étude, pour la période 2004–2012. Cette valeur correspond à environ 29 % de la moyenne historique des précipitations (1,514 mm an–1). Ces résultats sont utiles pour de prochaines études concernant l’évaluation de la recharge dans les zones affleurantes du GAS, pour lesquelles les données sont rares voire inexistantes.

Evaluación de datos de sensores remotos para estimar la recarga en una zona de afloramiento del Sistema Acuífero Guaraní (Sudamérica)

Resumen

El Sistema Acuífero Guaraní (GAS) es el reservorio transfronterizo más grande de agua subterránea en Sudamérica, sin embargo la recarga en zonas de afloramiento del GAS es una de las variables hidrológicas menos conocidas. El objetivo de este estudio fue evaluar la conveniencia de usar datos de sensores remotos en la ecuación del balance de agua para estimar los esquemas de recarga interanual en un área representativa de afloramiento del GAS. Los datos fueron obtenidos a partir de estimaciones de sensores remotos de la precipitación (P) y la evapotranspiración (ET) usando TRMM 3B42 V7 y MOD16, respectivamente, en la cuenca del Arroyo Onça en Brasil durante el período 2004–2012. Se trata de una cuenca plana elevada (con pendiente <1 %) dominada por suelos arenosos y representativos de las zonas de afloramientos del GAS. La aproximación de los sensores remotos fue comparada con el método de fluctuación del nivel freático (WTF) y otras ecuaciones de balance de agua usando mediciones de campo. Sobre la base mensual, la estimación de P por TRMM mostró una significativa concordancia con los datos de medición de campo de P (r = 0.93 y RMSE = 41 mm). La recarga media (±sd) basada en satélite (Rsat) fue 537(±224) mm año−1. La recarga media basada en mediciones de campo usando el balance de agua (Rgr) y métodos WTF (Rwtf) fueron 469 mm año−1 y 311(±75) mm año−1, respectivamente. Los resultados muestran que 440 mm año−1 es una recarga media (entre Rsat, Rgr y Rwtf) para el área de estudio en el período 2004–2012. Esta última estimación de la recarga media es cerca del 29 % de la media histórica de P (1,514 mm año−1). Estos resultados son útiles para estudios futuros para evaluar la recarga en zonas de afloramientos del GAS donde los datos son escasos o inexistentes.

评价估算(南美)Guarani含水层系统出露带补给量所用的遥感资料

摘要

Guarani含水层系统是南美最大的跨国界地下水库,然而,Guarani含水层系统出露带补给量是所知甚少的水文变量之一。本研究的目标就是评价水平衡公式中利用遥感资料的适用性,这里的水平衡公式用于估算具有代表性的Guarani含水层系统出露区的补给跨年模式。根据2004–2012年间巴西Onça Creek流域降水(P)和蒸发蒸腾(ET) 的估算值分别采用TRMM 3B42 V7 和 MOD16获取资料。这是一个高地平坦流域(坡度 < 1 %),主要为砂质土壤,具有Guarani含水层系统出露区代表性。利用陆基测量结果将遥感方法与水位波动法和另一个水平衡公式进行了对比。以月为基础,TRMM P估算值显示与陆基P资料(r = 0.93 及 RMSE = 41 mm)相当一致。平均(±SD)基于卫星的补给量(Rsat)为537(±224) mm year−1。采用水平衡法(Rgr)和水位波动法得到的平均陆基补给量分别为469 mm year−1 和 311(±75) mm year−1。结果显示440 mm year−1 为2004–2012年间研究区的平均(Rsat, RgrRwtf之间)补给量。后者平均补给量估算量大约为平均历史P值 (1,514 mm year−1)的大约29%。这些结果对于将来研究Guarani含水层系统出露带中资料匮乏或没有资料的地区补给量评价非常有用。

Avaliação de dados de sensoriamento remoto para estimar recarga para uma zona de afloramento do Sistema Aquífero Guarani (América do Sul)

Resumo

O Sistema Aquífero Guarani (SAG) é o maior reservatório transfronteiriço de água subterrânea na América do Sul, ainda assim a recarga nas áreas de afloramento do SAG é uma das variáveis hidrológicas menos conhecidas. O objetivo deste estudo foi avaliar a adequação do uso de dados de sensoriamento remoto na equação de balanço hídrico para estimar os padrões inter-anuais de recarga em uma área representativa de afloramento do SAG. Os dados foram obtidos através de estimativas por sensoriamento remoto de precipitação (P) e evapotranspiração (ET) utilizando TRMM 3B42 V7 e MOD16, respectivamente, na bacia do Ribeirão da Onça, Brasil, no período de 2004–2012. Trata-se de uma bacia hidrográfica de planície (declividade <1 %) dominada por solos arenosos e áreas representativas do afloramento do SAG. A abordagem por sensoriamento remoto foi comparada ao método da variação da superfície livre do aquífero (VSL) e a outra equação de balanço hídrico utilizando medidas de superfície. Mensalmente, a estimativa P do TRMM demonstrou concordância significativa com os dados P de medidas de superfície (r = 0.93 e Erro Quadrático Médio, EQM = 41 mm). A média (±desvio padrão) da recarga pelo satélite (Rsat) foi 537(±224) mm ano−1. As médias da recarga, baseadas em medidas de superfície utilizando os métodos de balanço hídrico (Rsup) e VSL (Rvsl), foram 469 mm ano−1 e 311(±75) mm ano−1, respectivamente. Os resultados mostram que a recarga média (entre Rsat, Rsup e Rvsl) para a área de estudo no período de 2004–2012 é de 440 mm ano−1. A estimativa de recarga média final é aproximadamente 29 % da média histórica da P (1,514 mm ano−1). Esses resultados são interessantes para estudos futuros na avaliação da recarga em áreas de afloramento do SAG onde os dados forem escassos ou inexistentes.

Supplementary material

10040_2015_1246_MOESM1_ESM.pdf (101 kb)
ESM 1(PDF 100 kb)

References

  1. Allen R, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration: guide-lines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, RomeGoogle Scholar
  2. Anderson RG, Lo M-H, Famiglietti JS (2012) Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation. Geophys Res Lett 39(16):1–6CrossRefGoogle Scholar
  3. Araújo LM, França AB, Potter PE (1999) Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Paraná basins, South America, and comparison with the Navajo-Nugget aquifer system, USA. Hydrogeol J 7:317–336CrossRefGoogle Scholar
  4. Armanios DE, Fisher JB (2014) Measuring water availability with limited ground data: assessing the feasibility of an entirely remote-sensing-based hydrologic budget of the Rufiji Basin, Tanzania, using TRMM, GRACE, MODIS, SRB, and AIRS. Hydrol Process 28(16):853–867CrossRefGoogle Scholar
  5. Brunner P, Franssen H-JH, Kgotlhang L, Bauer-Gottwein P, Kinzelbach W (2007) How can remote sensing contribute in groundwater modeling? Hydrogeol J 15(1):5–18CrossRefGoogle Scholar
  6. Cabral OM, Rocha HR, Gash JH, Ligo MA, Freitas HC, Tatsch JD (2010) The energy and water balance of a eucalyptus plantation in southeast Brazil. J Hydrol 388(34):208–216CrossRefGoogle Scholar
  7. Callahan TJ, Vulava VM, Passarello MC, Garrett CG (2012) Estimating groundwater recharge in lowland watersheds. Hydrol Process 26(19):2845–2855CrossRefGoogle Scholar
  8. Coes AL, Spruill TB, Thomasson MJ (2007) Multiple-method estimation of recharge rates at diverse locations in the North Carolina Coastal Plain, USA. Hydrogeol J 15(4):773–788CrossRefGoogle Scholar
  9. Dages C, Voltz M, Bsaibes A, Prévot L, Huttel O, Louchart A, Garnier F, Negro S (2009) Estimating the role of a ditch network in groundwater recharge in a Mediterranean catchment using a water balance approach. J Hydrol 375(3–4):498–512CrossRefGoogle Scholar
  10. IPT (Instituto de Pesquisas Tecnológicas) (2011) Sistema Aquífero Guarani: Subsídios ao plano de desenvolvimento e proteção ambiental da área de afloramento do Sistema Aquífero Guarani no Estado de São Paulo [Guarani Aquifer System: subsidies to development environmental plan and protection of Guarani Aquifer System outcrop area in the São Paulo State]. IPT, São Paulo, BrazilGoogle Scholar
  11. Delin GN, Healy RW, Lorenz DL, Nimmo JR (2007) Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota (USA). J Hydrol 334(12):231–249CrossRefGoogle Scholar
  12. Dripps WR, Hunt RJ, Anderson MP (2006) Estimating recharge rates with analytic element models and parameter estimation. Groundwater 44(1):47–55CrossRefGoogle Scholar
  13. Fetter CW (1994) Applied hydrogeology, 3rd edn. Prentice-Hall, Upper Saddle River, New JerseyGoogle Scholar
  14. Foster S, Hirata R, Vidal A, Schmidt G, Garduño H (2009) The Guarani Aquifer initiative: towards realistic groundwater management in a transboundary context. GW-MATE, Case Profile Collection no. 9. http://water.worldbank.org/node/83770. Accessed 7 June 2014
  15. Gómez AA, Rodríguez LB, Vives LS (2010) The Guarani aquifer system: estimation of recharge along the Uruguay-Brazil border. Hydrogeol J 18(7):1667–1684CrossRefGoogle Scholar
  16. Haines WB (1930) Studies in the physical properties of soil: V. the hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J Agric Sci 20:97–116CrossRefGoogle Scholar
  17. Healy R (2010) Estimating groundwater recharge. Cambridge University Press, LondonCrossRefGoogle Scholar
  18. Healy R, Cook P (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10(1):91–109CrossRefGoogle Scholar
  19. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55CrossRefGoogle Scholar
  20. Jackson TJ (2002) Remote sensing of soil moisture: implications for groundwater recharge. Hydrogeol J 10(1):40–51CrossRefGoogle Scholar
  21. Johnson AI (1967) Specific yield: compilation of specific yields for various materials. US Geol Surv Wat Suppl Pap 1662-D. http://pubs.er.usgs.gov/publication/wsp1662D. Accessed 22 January 2015
  22. Khalaf A, Donoghue D (2012) Estimating recharge distribution using remote sensing: a case study from the West Bank. J Hydrol 414–415:354–363CrossRefGoogle Scholar
  23. Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J (1998) The Tropical Rainfall Measuring Mission (TRMM) sensor package. J Atmos Oceanic Tech 15(3):809–817CrossRefGoogle Scholar
  24. Loarie SR, Lobell DB, Asner GP, Mu Q, Field CB (2011) Direct impacts on local climate of sugar-cane expansion in Brazil. Nat Clim Chang 1(2):105–109CrossRefGoogle Scholar
  25. Lucas MC, Wendland E (2012) Estimativa de recarga subterrânea em área de afloramento do Sistema Aquífero Guarani [Estimating groundwater recharge in the outcrop area of the Guarani Aquifer System]. Bol Geol Min 123(3):311–323Google Scholar
  26. Maréchal JC, Dewandel B, Ahmed S, Galeazzi L, Zaidi FK (2006) Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J Hydrol 329(1–2):281–293CrossRefGoogle Scholar
  27. Meirelles ML, Franco AC, Farias SEM, Bra R (2014) Evapotranspiration and plant-atmospheric coupling in a Brachiaria brizantha pasture in the Brazilian savannah region. Grass For Sci 66(2):206–213CrossRefGoogle Scholar
  28. Misstear BDR, Brown L, Johnston PM (2009) Estimation of groundwater recharge in a major sand and gravel aquifer in Ireland using multiple approaches. Hydrogeol J 17(3):693–706CrossRefGoogle Scholar
  29. Moazami S, Golian S, Kavianpour MR, Hong Y (2014) Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmos Res 137:145–166CrossRefGoogle Scholar
  30. Mu QZ, Zhao MS, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800CrossRefGoogle Scholar
  31. Műnch Z, Conrad JE, Gibson LA, Palmer AR, Hughes D (2013) Satellite earth observation as a tool to conceptualize hydrogeological fluxes in the Sandveld, South Africa. Hydrogeol J 21(15):1053–1070CrossRefGoogle Scholar
  32. National Aeronautics and Space Administration (NASA) (2014) The rainfall data provided by the Tropical Rainfall Measuring Mission (TRMM). http://disc.sci.gsfc.nasa.gov/precipitation/tovas. Accessed 7 February 2015
  33. Numerical Terradynamic Simulation Group (NTSG) (2014) The evapotranspiration (ET) data provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product MOD16. ftp://ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD16. Accessed 7 February 2015
  34. OAS/GEF (General Secretariat of the Organization of American States/Global Environment Facility) (2009) Guarani Aquifer: strategic action program. http://www2.ana.gov.br/Paginas/projetos/GEFAquiferoGuarani.aspx. Accessed 17 October 2014
  35. Oliveira PTS, Nearing MA, Moran MS, Goodrich DC, Wendland E, Gupta HV (2014) Trends in water balance components across the Brazilian Cerrado. Water Resour Res 50(9):7100–7114CrossRefGoogle Scholar
  36. Prakash S, Mahesh C, Gairola RM (2013) Comparison of TRMM Multi-satellite Precipitation Analysis (TMPA)-3B43 version 6 and 7 products with rain gauge data from ocean buoys. Remote Sens Lett 4(7):677–685CrossRefGoogle Scholar
  37. Rabelo J, Wendland E (2009) Assessment of groundwater recharge and water fluxes of the Guarani Aquifer System, Brazil. Hydrogeol J 17(7):1733–1748CrossRefGoogle Scholar
  38. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(10):18–39CrossRefGoogle Scholar
  39. Schlesinger WH, Jasechko S (2014) Transpiration in the global water cycle. Agric For Meteor 189–190:115–117CrossRefGoogle Scholar
  40. Swenson S, Wahr J (2009) Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol 370(1–4):163–176CrossRefGoogle Scholar
  41. Szilagyi J, Zlotnik VA, Gates JB, Jozsa J (2011) Mapping mean annual groundwater recharge in the Nebraska Sand Hills, USA. Hydrogeol J 19(8):1503–1513CrossRefGoogle Scholar
  42. Szilagyi J, Zlotnik VA, Jozsa J (2013) Net recharge vs. depth to groundwater relationship in the Platte River Valley of Nebraska, United States. Goundwater 51(6):945–951CrossRefGoogle Scholar
  43. Taylor JR (2012) Introdução à análise de erros: o estudo de incertezas em medições físicas [An introduction to error analysis: the study of uncertainties in physical measurements], 2nd edn. Bookman, Porto Alegre, BrazilGoogle Scholar
  44. Tizro AT, Voudouris K, Basami Y (2012) Estimation of porosity and specific yield by application of geoelectrical method: a case study in western Iran. J Hydrol 454–455:160–172CrossRefGoogle Scholar
  45. Wang H, Guan H, Gutiérrez-Jurado HA, Simmons CT (2014) Examination of water budget using satellite products over Australia. J Hydrol 511:546–554CrossRefGoogle Scholar
  46. Wendland E, Barreto C, Gomes L (2007) Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring. J Hydrol 342(34):261–269CrossRefGoogle Scholar
  47. Wendland E, Gomes LH, Troeger U (2015) Recharge contribution to the Guarani Aquifer system estimated from the water balance method in a representative watershed. Anais Acad Bras Ciên 87(2):1–7Google Scholar
  48. Wisler CO, Brater EF (1959) Hydrology. Wiley, Chichester, UKGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Murilo Lucas
    • 1
  • Paulo T. S. Oliveira
    • 1
  • Davi C. D. Melo
    • 1
  • Edson Wendland
    • 1
  1. 1.Department of Hydraulics and Sanitary EngineeringUniversity of São PauloSão CarlosBrazil

Personalised recommendations