Hydrogeology Journal

, Volume 23, Issue 5, pp 1027–1040

Impact of managed aquifer recharge on the chemical and isotopic composition of a karst aquifer, Wala reservoir, Jordan

  • Julian Xanke
  • Nadine Goeppert
  • Ali Sawarieh
  • Tanja Liesch
  • Jochen Kinger
  • Wasim Ali
  • Heinz Hötzl
  • Khair Hadidi
  • Nico Goldscheider
Report

Abstract

Storm-water harvesting and storage via managed aquifer recharge (MAR) is a promising approach to combat water scarcity in semi-arid regions, but poses a challenge for karst aquifers and regions with highly variable water availability. The infiltration of low-mineralized surface water and its impact on highly mineralized groundwater of a karst aquifer was investigated at Wala reservoir in Jordan over a period of approximately 10 years. The results show significant groundwater-level rise in a wellfield, in response to the yearly average infiltration of about 6.7 million m3. This corresponds to about 60 % of the yearly average abstraction of about 11.7 million m3, confirmed by mixing calculations with tritium. A decreasing trend in infiltration due to sedimentation is observed. Mean groundwater residence times of several thousand years, derived from carbon-14 dating, indicate a large storage capacity of the aquifer. The heterogeneous distribution of the residence times is caused by strong groundwater withdrawals and artificial recharge along with karst-specific aquifer characteristics. Temporal groundwater salinity fluctuations in the wellfield are observed after the first MAR infiltration. Enhanced groundwater flow along the wadi course was demonstrated, which is an important aspect with regards to future MAR projects in similar wadis of the region.

Keywords

Managed aquifer recharge Hydrochemistry Semi-arid climate Karst Jordan 

Auswirkungen von künstlicher Grundwasseranreicherung auf die chemische- und isotopische Zusammensetzung eines Karstaquifers, Wala Reservoir, Jordanien

Zusammenfassung

Das Sammeln und Speichern von Niederschlagswasser durch künstliche Grundwasseranreicherung (MAR) ist ein vielversprechender Ansatz zur Bekämpfung von Wasserknappheit in semiariden Regionen, stellt aber gleichzeitig eine Herausforderung für Karstgrundwasserleiter und Regionen mit sehr unterschiedlicher Wasserverfügbarkeit dar. Die Infiltration von niedrig mineralisiertem Oberflächenwasser und dessen Auswirkungen auf hoch mineralisiertes Grundwasser eines Karstgrundwasserleiters wurde am Wala Reservoir in Jordanien über einen Zeitraum von etwa 10 Jahren untersucht. Die Ergebnisse zeigen einen erheblichen Grundwasseranstieg in einem Brunnenfeld als Reaktion auf die durchschnittliche jährliche Infiltration von etwa 6.7 Mio. m3. Dies entspricht rund 60 % der durchschnittlichen jährlichen Grundwasserentnahme von etwa 11.7 Mio. m3, was durch Mischungsrechnungen mit Tritium bestätigt werden konnte. Eine Abnahme der Infiltrationsrate durch Sedimentation wird beobachtet. Die mittleren Grundwasserverweilzeiten von mehreren tausend Jahren, abgeleitet aus Kohlenstoff-14 Datierungen, weisen auf die große Speicherkapazität des Grundwasserleiters hin. Die heterogene Verteilung der Verweilzeiten wird durch die starke Grundwasserentnahme, die künstliche Grundwasseranreicherung und die spezifischen Eigenschaften eines Karstgrundwasserleiters hervorgerufen. Temporäre Schwankungen der Grundwassersalinität im Brunnenfeld wurden nach der ersten MAR-Infiltration beobachtet. Entlang des Wadis wurde ein erhöhter Grundwasserdurchfluss nachgewiesen, was ein wichtiger Aspekt im Hinblick auf zukünftige MAR-Projekte in ähnlichen Wadis der Region ist.

Impact d’une recharge contrôlée sur la composition chimique et isotopique d’un aquifère karstique, réservoir Wala, Jordanie

Résumé

La collecte et le stockage de l’eau de précipitation par recharge contrôlée d’aquifère est une approche prometteuse pour combattre la rareté de l’eau dans les régions semi-arides, mais représente un défi pour les aquifères karstiques dans les régions où la disponibilité de l’eau est hautement variable. L’infiltration d’une eau de surface peu minéralisée et son impact sur l’eau souterraine très minéralisée d’un aquifère karstique ont été étudiés sur le réservoir Wala en Jordanie pendant environ 10 ans. Les résultats montrent une élévation importante du niveau de nappe souterraine dans un champ captant, en réponse à une infiltration annuelle moyenne d’environ 6.7 millions m3. Ceci correspond à environ 60 % du prélèvement annuel moyen de 11.7 millions m3, confirmé par recoupement de calculs basés sur le tritium. On observe une tendance à la décroissance du volume d’infiltration due à la sédimentation. Un temps moyen de résidence de plusieurs milliers d’années des eaux souterraines, établi par datation au carbone 14, indique une large capacité de stockage de l’aquifère. La distribution hétérogène des temps de résidence résulte de forts prélèvements, de la recharge artificielle ainsi que des caractéristiques de l’aquifère karstique. Les fluctuations temporaires de la salinité des eaux souterraines dans le champ captant ont été observées après la première recharge contrôlée. Une augmentation du flux des eaux souterraines sous fluviale de l’oued a été mise en évidence, ce qui constitue un résultat important pour les futurs projets de recharge contrôlée des oueds similaires de la région.

Impacto de la gestión de la recarga de acuíferos en la composición química e isotópica de un acuífero kárstico, el reservorio de Wala, Jordán

Resumen

La recolección y almacenamiento de agua de tormentas dentro de la gestión de la recarga de acuíferos (MAR) es un método prometedor para combatir la escasez de agua en regiones semiáridas, pero plantea un desafío para acuíferos kársticos y regiones con disponibilidad de agua altamente variable. Se investigó la infiltración de agua superficial de baja mineralización y su impacto en el agua subterránea altamente mineralizada de un acuífero kárstico en el reservorio de Wala en Jordán durante un período de aproximadamente 10 años. Los resultados muestran un ascenso significativo del nivel de agua subterránea en un campo de pozos, en respuesta a una infiltración anual promedio de alrededor de 6.7 millones de m3. Esto corresponde a alrededor del 60 % de la extracción promedio anual de unos 11.7 millones de m3, confirmada por los cálculos de mezcla de tritio. Se observa una tendencia decreciente de la tasa de infiltración debido a la sedimentación. Los tiempos de residencia media del agua subterránea de varios miles de años, derivados de dataciones de carbono 14, indican una gran capacidad de almacenamiento del acuífero. La distribución heterogénea de los tiempos de residencia es causada por las fuertes depresiones del agua subterránea y la recarga artificial junto con las características específicas del acuífero kárstico. Se observan fluctuaciones temporales de la salinidad del agua subterránea en los campos de pozos después de la primera infiltración de la MAR. Se demostró un flujo subterráneo mejorado a lo largo del curso del wadi, lo cual es un aspecto importante con respecto de los futuros proyectos MAR en wadis similares de la región.

تأثير التغذية الصناعية على التركيب الكيماوي والنظائري للخزان المائي الجوفي الكارستي، سد الواله - الاردن

ملخص

يعتبر الحصاد المائي لمياه العواصف المطرية وتخزينها لتغذية المياه الجوفية صناعيا (MAR)من الطرق الهامة لزيادة مصادر المياه في المناطق شبه الجافة. ولكن هذه التغذية تشكل تحد للخزانات المائية الجوفية الكارستية وللمناطق التي تتغير بها وفرة المياه بشكل كبير. ومن خلال هذه البحث فقد تم دراسة تأثير رشح المياه السطحية والتي تتميز بقلة العناصر المعدنية على المياه الجوفية الغنية بالعناصر المعدنية في الطبقات الحاملة لتلك المياه حيث تتميز هذه الطبقات بوجود الكهوف والتجاويف وذلك في منطقة سد الوالة في الاردن ولفترة عشر سنوات تقريباً. وقد أظهرت نتائج هذه الدراسة ارتفاع هام لمستوى المياه الجوفية في الابار كاستجابة لمعدل التغذية السنوي والذي يقارب 6.7 مليون متر مكعب. وهذا يعادل حوالي 60 % من معدل الضخ السنوي من الخزان الجوفي والذي يبلغ 11.7 مليون متر مكعب وقد تم تأكيده بحسابات الخاط مع التريتيوم كما تم ملاحظة انخفاض معدل التغذية بسبب زيادة الرسوبيات في السد. حسب تحليل كربون 14 فان متوسط عمر المياه الجوفية يقدر بعدة الاف من السنين مما يدل على السعة التخزينية الكبيرة للخزان الجوفي. ان التوزيع الغير متجانس لعمر المياه يعود للضخ الجائر المترافق مع التغذية الصناعية للخزان الجوفي الكارستي. وقد لوحظ تذبذب لحظي في ملوحة المياه الجوفية بعد اول عملية تغذية صناعية. ولذلك لا بد من تحسين ظروف انسياب المياه في مجاري الاودية في مشاريع التغذية الصناعية المستقبلية في الوديان المشابه في المنطقة.

含水层补给管理对约旦Wala蓄水地一个岩溶含水层中的化学和同位素组分的影响

摘要

通过含水层补给管理进行的雨水收集和储存是半干旱地区抗击缺水的一个大有希望的方法,但同时也对含水层和水拥有量高度变化的地区提出了挑战。对约旦Wala储水地矿化度低的地表水入渗及其对矿化度高的岩溶含水层地下水的影响进行了大约10年的调查。结果显示,每年的平均入渗量大约为670万m3,致使井场的地下水位大幅上升。这相当于由采用氚进行的混合计算确定的每年平均抽取量1170万m3的大约60%。观测到由于沉积入渗速度有加快的趋势。碳14测年得出平均地下水滞留时间几千年,表明含水层的储存容量很大。滞留时间的不均匀分布是由地下水强烈抽取和人工补给加上岩溶含水层特有的特征所造成的。首次含水层补给管理入渗之后观测到了井场地下水盐度的时间上的波动。证明沿干谷河道的地下水流增强,这是本地区类似干谷未来含水层补给管理项目中一个重要方面。

Impacte da recarga gerida de aquíferos na composição química e isotópica de um aquífero cársico, reservatório de Wala, Jordânia

Resumo

A recolha de água de precipitação e o armazenamento via recarga gerida de aquíferos (RGA) é uma aproximação promissora no combate à escassez de água em regiões semiáridas, mas coloca um desafio em aquíferos cársicos e regiões com elevada variabilidade de disponibilidade de água. Durante um período de aproximadamente 10 anos, foi investigada, no reservatório de Wala, na Jordânia, a infiltração de água superficial de baixa mineralização e o seu impacte na água muito mineralizada de um aquífero cársico. Os resultados mostram uma significativa subida dos níveis num campo de captações subterrâneas em resposta à infiltração média anual de cerca de 6.7 milhões de m3 de água. Isto corresponde a cerca de 60 % da extração anual de cerca de 11.7 milhões de m3, valor confirmado por cálculos de mistura com o uso de trítio. É observada uma tendência decrescente das taxas de infiltração, devida a sedimentação. A grande capacidade de armazenamento do aquífero é indicada pelos valores médios de residência da água subterrânea, de vários milhares de anos, dados derivados da datação com carbono-14. A distribuição heterogénea dos tempos de residência é causada por fortes extrações de água subterrânea e pela recarga artificial, em conjunto com as caraterísticas específicas do aquífero cársico. As flutuações temporais de salinidade no campo de captações são observadas depois da primeira infiltração por RGA. Foi demonstrado um reforço do caudal ao longo do percurso do rio temporário, o que é um aspeto importante a ter em conta no futuro em projetos de RGA em rios com caraterísticas similares na região.

Supplementary material

10040_2015_1233_MOESM1_ESM.pdf (50 kb)
ESM 1(PDF 50 kb)

References

  1. Al-Assa’d TA, Abdulla FA (2010) Artificial groundwater recharge to a semi-arid basin: case study of Mujib aquifer, Jordan. Environ Earth Sci 60(4):845–859CrossRefGoogle Scholar
  2. Al-Hunjul NG (1993) Geological map of Madaba. Madaba 3153 II, scale 1:50 000. Geological Mapping Division, National Mapping Project, Amman, JordanGoogle Scholar
  3. Bajjali W (2006) Recharge mechanism and hydrochemistry evaluation of groundwater in the Nuaimeh area, Jordan, using environmental isotope techniques. Hydrogeol J 14(1–2):180–191CrossRefGoogle Scholar
  4. Bajjali W, Abu-Jaber N (2001) Climatological signals of the paleogroundwater in Jordan. J Hydrol 243(1):133–147CrossRefGoogle Scholar
  5. Bakalowicz M (1994) Water geochemistry: water quality and dynamics. Groundw Ecol 1:97–127CrossRefGoogle Scholar
  6. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160CrossRefGoogle Scholar
  7. Bayer HJ, Hötzl H, Jado AR, Röscher B, Voggenreiter W (1988) Sedimentary and structural evolution of the northwest Arabian Red Sea margin. Tectonophysics 153(1):137–151CrossRefGoogle Scholar
  8. Bender F (1968) Geologie von Jordanien [Geology of Jordan]. 230 pp, Borntraeger, BerlinGoogle Scholar
  9. Bouwer H (2000) Integrated water management: emerging issues and challenges. Agric Water Manag 45(3):217–228CrossRefGoogle Scholar
  10. Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10(1):121–142CrossRefGoogle Scholar
  11. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FLGoogle Scholar
  12. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  13. Daher W, Pistre S, Kneppers A, Bakalowicz M, Najem W (2011) Karst and artificial recharge: theoretical and practical problems—a preliminary approach to artificial recharge assessment. J Hydrol 408(3):189–202CrossRefGoogle Scholar
  14. Dillon P (2005) Future management of aquifer recharge. Hydrogeol J 13(1):313–316CrossRefGoogle Scholar
  15. Dillon P, Pavelic P, Page D, Beringen H, Ward J (2009) Managed aquifer recharge: an introduction. Waterlines Report Series no. 13, February 2009, National Water Commisssion, Canberra, Australia, 77 ppGoogle Scholar
  16. Dreybrodt W, Romanov D, Gabrovsek F (2002) Karstification below dam sites: a model of increasing leakage from reservoirs. Environ Geol 42(5):518–524CrossRefGoogle Scholar
  17. Eberts SM, Böhlke JK, Kauffman LJ, Jurgens BC (2012) Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeol J 20(2):263–282CrossRefGoogle Scholar
  18. Eichinger L (1983) A contribution to the interpretation of 14C groundwater ages considering the example of a partially confined sandstone aquifer. In: Stuiver M, Kra RS (eds) Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 347–356Google Scholar
  19. Einsiedl F (2005) Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers. J Hydrol 312(1):312–321CrossRefGoogle Scholar
  20. El-Naqa A (1993) Hydrological and hydrogeological characteristics of Wadi el Mujib catchment area, Jordan. Environ Geol 22(3):257–271CrossRefGoogle Scholar
  21. El-Naqa A, Al Kuisi M (2004) Hydrogeochemical modeling of the water seepages through Tannur Dam, southern Jordan. Environ Geol 45(8):1087–1100CrossRefGoogle Scholar
  22. El-Naqa A, Al-Shayeb A (2009) Groundwater protection and management strategy in Jordan. Water Resour Manag 23(12):2379–2394CrossRefGoogle Scholar
  23. Etcheverry D, Vennemann T (2009) Isotope im Grundwasser: Methoden zur Anwendung in der hydrogeologischen Praxis. Umwelt-Wissen no. 0930 [Isotopes in groundwater: methods for use in hydrogeological practice. Environmental studies no. 0930]. Bundesamt für Umwelt, Bern, Switzerland, 121 ppGoogle Scholar
  24. Evans GV, Otlet RL, Downing A, Monkhouse RA, Rae G (1979) Some problems in the interpretation of isotope measurements in United Kingdom aquifers. In: Isotope hydrology II. IAEA, Vienna, pp 679–708Google Scholar
  25. Fontes JC, Garnier JM (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15(2):399–413CrossRefGoogle Scholar
  26. Gat JR, Mazor E, Tzur Y (1969) The stable isotope composition of mineral waters in the Jordan Rift Valley, Israel. J Hydrol 76:334–352CrossRefGoogle Scholar
  27. Geyh MA (1970) Carbon-14 concentration of lime in soils and aspects of the carbon-14 dating of groundwater. In: Isotope hydrology. IAEA, Vienna, pp 215–223Google Scholar
  28. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. International Contributions to Hydrogeology, 26, CRC, Boca Raton, FLGoogle Scholar
  29. Gonfiantini R, Zuppi GM (2003) Carbon isotope exchange rate of DIC in karst groundwater. Chem Geol 197(1):319–336CrossRefGoogle Scholar
  30. Gonfiantini R, Fröhlich K, Araguas-Araguas L, Rozanski K (1998) Isotopes in groundwater hydrology. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 203–246Google Scholar
  31. Goode DJ, Senior LA, Subah A, Jaber A (2013) Groundwater-level trends and forecasts, and salinity trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa groundwater basins, Jordan. US Geol Surv Open File Rep 2013-1061Google Scholar
  32. Green RT, Bertetti FP, Miller MS (2014) Focused groundwater flow in a carbonate aquifer in a semi-arid environment. J Hydrol 517:284–297Google Scholar
  33. Hiller T, Kaufmann G, Romanov D (2011) Karstification beneath dam-sites: from conceptual models to realistic scenarios. J Hydrol 398(3):202–211CrossRefGoogle Scholar
  34. Humphreys H, Partners (1991) Dams on Wadi Wala and Wadi Mujib, part IV: site investigation. Internal report of the Jordan Valley Authority of Jordan, AmmanGoogle Scholar
  35. Jurgens BC, Bexfield LM, Eberts SM (2014) A Ternary age‐mixing model to explain contaminant occurrence in a deep supply well. Groundwater Suppl 1:25–39Google Scholar
  36. Kattan Z (1995) Chemical and environmental isotope study of the fissured basaltic aquifer system of the Yarmouk basin (Syrian Arab Republic). In: Proceedings of a symposium on isotopes in water resources management. IAEA-SM-336/28, vol. 2, IAEA, ViennaGoogle Scholar
  37. Kattan Z (2001) Use of hydrochemistry and environmental isotopes for evaluation of groundwater in the Paleogene limestone aquifer of the Ras Al-Ain area (Syrian Jezireh). Environ Geol 41(1–2):128–144CrossRefGoogle Scholar
  38. Lakshmanan E, Kannan R, Senthil Kumar M (2003) Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuram district Nadu, India. Environ Geosci 10(4):157–166CrossRefGoogle Scholar
  39. Małoszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers: 1. models and their applicability. J Hydrol 57(3):207–231CrossRefGoogle Scholar
  40. Margane A, Hobler M, Almomani M, Subah A (2002) Contributions to the hydrogeology of northern and central Jordan. Geologisches Jahrbuch, Reihe C 68:52Google Scholar
  41. Margane A, Hamdan I, Hajali Z (2009) Delineation of surface water protection zones for the Wala Dam. Technical report no. 12, MWI, Amman, JordanGoogle Scholar
  42. Masciopinto C, La Mantia R, Pollice A, Laera G (2012) Managed aquifer recharge of a karstic aquifer in Nardó, Italy. Reclaim Water: Advances in Water Reclamation Technologies for Safe Managed Aquifer Recharge, 47, European Commission, BrusselsGoogle Scholar
  43. Mays L (ed) (2009) Integrated urban water management: arid and semi-arid regions: UNESCO-IHP, vol 3. UNESCO, ParisGoogle Scholar
  44. Meredith K (2009) Radiocarbon age dating groundwaters of the West Canning Basin, Western Australia. Dept. of Water, Perth, AustraliaGoogle Scholar
  45. MWI (2004) National Water Master Plan (NWMP). Ministry for Water and Irrigation, Amman, JordanGoogle Scholar
  46. MWI (2012) Database. Ministry for Water and Irrigation, Amman, JordanGoogle Scholar
  47. Ofterdinger US, Balderer W, Loew S, Renard P (2004) Environmental isotopes as indicators for ground water recharge to fractured granite. Ground Water 42(6):868–879CrossRefGoogle Scholar
  48. Pearson FJ, Hanshaw BB (1970) Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating. Isot Hydrol 1970:271–286Google Scholar
  49. Pearson FJ, White DE (1967) Carbon 14 ages and flow rates of water in Carrizo Sand, Atascosa County, Texas. Water Resour Res 3(1):251–261CrossRefGoogle Scholar
  50. Plummer LN (2005) Dating of young groundwater. In: Isotopes in the water cycle. Springer, Dordrecht, The Netherlands, pp 193–218Google Scholar
  51. Plummer LN, Glynn PD (2013) Radiocarbon dating in groundwater systems, chap 4. In: Isotopes methods for dating old groundwater. IAEA, ViennaGoogle Scholar
  52. Powell JH, Moh'd BK (2011) Evolution of Cretaceous to Eocene alluvial and carbonate platform sequences in central and south Jordan. GeoArabia-Middle East Petrol Geosci 16(4):29–82Google Scholar
  53. Romanov D, Gabrovsek F, Dreybrodt W (2007) Leakage below dam sites in limestone terrains by enhanced karstification: a modeling approach. Environ Geol 51(5):775–779CrossRefGoogle Scholar
  54. Salem O, Visser JH, Dray M, Gonfiantini R (1980) Groundwater flow patterns in the western Lybian Arab Jamahiriaya. In: Arid-zone hydrology: investigations with isotope techniques. IAEA, Vienna, pp 165–179Google Scholar
  55. Schmidt S, Geyer T, Marei A, Guttman J, Sauter M (2013) Quantification of long-term wastewater impacts on karst groundwater resources in a semi-arid environment by chloride mass balance methods. J Hydrol 502:177–190CrossRefGoogle Scholar
  56. Schmoll, Oliver (2006) Protecting groundwater for health: managing the quality of drinking-water sources. World Health Organization, GenevaGoogle Scholar
  57. Tamers MA (1967) Radiocarbon ages of groundwater in an arid zone unconfined aquifer. Geophysical Monograph Series, vol 11, AGU, Washington, DC, pp 143–152Google Scholar
  58. Vanderzalm JL, Page DW, Barry KE, Dillon PJ (2010) A comparison of the geochemical response to different managed aquifer recharge operations for injection of urban stormwater in a carbonate aquifer. Appl Geochem 25(9):1350–1360CrossRefGoogle Scholar
  59. Vogel JC (1968) Investigation of groundwater flow with radiocarbon. In: Isotopes in hydrology. International Atomic Energy Agency, Vienna, pp 355–369 Google Scholar
  60. Wolf L, Werz H, Hoetzl H, Ghanem M (2007) Exploring the potential of managed aquifer recharge to mitigate water scarcity in the Lower Jordan River Basin within an IWRM approach. In: Proceedings of the 6th International Symposium on Managed Artificial Recharge of Groundwater, ISMAR6, Phoenix, AZ, 28 October–2 November 2007Google Scholar
  61. World Health Organization (ed) (2004) Guidelines for drinking-water quality: recommendations, vol 1. WHO, GenevaGoogle Scholar
  62. Zinn BA, Konikow LF (2007) Potential effects of regional pumpage on groundwater age distribution. Water Resour Res 43(6)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Julian Xanke
    • 1
  • Nadine Goeppert
    • 1
  • Ali Sawarieh
    • 2
  • Tanja Liesch
    • 1
  • Jochen Kinger
    • 1
  • Wasim Ali
    • 1
  • Heinz Hötzl
    • 1
  • Khair Hadidi
    • 3
  • Nico Goldscheider
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT)Division of HydrogeologyKarlsruheGermany
  2. 2.Natural Resource AuthorityAmmanJordan
  3. 3.Water Authority JordanAmmanJordan

Personalised recommendations