Hydrogeology Journal

, Volume 23, Issue 4, pp 757–773 | Cite as

Determining the vertical evolution of hydrodynamic parameters in weathered and fractured south Indian crystalline-rock aquifers: insights from a study on an instrumented site

  • A. Boisson
  • N. Guihéneuf
  • J. Perrin
  • O. Bour
  • B. Dewandel
  • A. Dausse
  • M. Viossanges
  • S. Ahmed
  • J. C. Maréchal
Report

Abstract

Due to extensive irrigation, most crystalline aquifers of south India are overexploited. Aquifer structure consists of an upper weathered saprolite followed by a fractured zone whose fracture density decreases with depth. To achieve sustainable management, the evolution of hydrodynamic parameters (transmissivity and storage coefficient) by depth in the south Indian context should be quantified. Falling-head borehole permeameter tests, injection tests, flowmeter profiles, single-packer tests and pumping tests were carried out in the unsaturated saprolite and saturated fractured granite. Results show that the saprolite is poorly transmissive (T fs = 3 × 10–7 to 8.5 × 10–8 m2 s–1) and that the most conductive part of the aquifer corresponds to the bottom of the saprolite and the upper part of the fractured rock (T = 1.0 × 10–3 to 7.0 × 10–4 m2 s–1). The transmissivity along the profile is mostly controlled by two distinct conductive zones without apparent vertical hydraulic connection. The transmissivity and storage coefficient both decrease with depth depending on the saturation of the main fracture zones, and boreholes are not exploitable after a certain depth (27.5 m on the investigated section). The numerous investigations performed allow a complete quantification with depth of the hydrodynamic parameters along the weathering profile, and a conceptual model is presented. Hydrograph observations (4 years) are shown to be relevant as a first-order characterization of the media and diffusivity evolution with depth. The evolution of these hydrodynamic parameters along the profile has a great impact on groundwater prospecting, exploitation and transport properties in such crystalline rock aquifers.

Keywords

Crystalline rocks India Transmissivity Connectivity Hydraulic testing 

Détermination de l’évolution verticale des paramètres hydrodynamiques d’aquifères altérés et fracturés en roche cristalline dans le Sud de l’Inde: les enseignements d’une étude sur un site expérimental

Résumé

En raison de l’irrigation extensive, la plupart des aquifères cristallins de l’Inde du Sud sont surexploités. La structure de l’aquifère se compose d’une saprolite supérieure altérée suivie d’une zone fracturée dont la densité de fractures diminue avec la profondeur. Pour parvenir à une gestion durable, l’évolution des paramètres hydrodynamiques (transmissivité et coefficient de stockage) selon la profondeur dans le contexte d’Inde du Sud doit être quantifiée. Des tests de perméabilité en forage avec une chute de la charge hydraulique, des essais d’injection, des profils de débitmètre, des tests à simple obturateur et des essais de pompage ont été réalisés dans la saprolite non saturée et dans le granité fracturé saturée en en eau. Les résultats montrent que la saprolite est faiblement transmissive (T fs = 3 × 10–7 to 8.5 × 10–8 m2 s–1) et que la partie la plus conductrice de l’aquifère correspond à la base de la saprolite et à la partie supérieure de la roche fracturée (T = 1.0 × 10–3 to 7.0 × 10–4 m2 s–1). La transmissivité le long d’un profil est principalement contrôlée par deux zones conductrices distinctes sans connexion hydraulique verticale apparente. La transmissivité et le coefficient d’emmagasinement diminuent tous deux avec la profondeur en fonction de la saturation des principales zones de fractures, et les forages ne sont plus exploitables après une certaine profondeur (27,5 m sur la section étudiée). Les nombreuses investigations réalisées permettent une quantification complète des paramètres hydrodynamiques en fonction de la profondeur le long du profil d’altération, et un modèle conceptuel est présenté. Des observations hydrographiques (4 ans) sont pertinentes en tant que caractérisation de premier ordre du milieu et de l’évolution de la diffusivité avec la profondeur. L’évolution de ces paramètres hydrodynamiques le long du profil a un grand impact pour la prospection et l’exploitation des eaux souterraines et les propriétés du transport dans ce type d’aquifères de roche cristalline.

Determinación de la evolución vertical de parámetros hidrodinámicos en acuíferos de rocas cristalinas fracturadas y meteorizadas en el sur de India: conocimientos de un estudio en un sitio con instrumentación

Resumen

Debido al riego extensivo, la mayor parte de los acuíferos cristalinos del sur de India están sobreexplotados. La estructura del acuífero consiste de un saprolito superior meteorizado seguido por una zona fracturada cuya densidad de fracturas disminuye con la profundidad. Para lograr un manejo sustentable debió ser cuantificada la evolución de los parámetros hidrodinámicos (transmisividad y coeficiente de almacenamiento) en profundidad en el contexto del sur de India. Se llevaron a cabo ensayos de descenso de la carga hidráulica en permeámetros de perforaciones, ensayos de inyección, registros de variaciones de velocidad de flujo, ensayos con un único obturador y ensayos de bombeo en el saprolito no saturado y en el granito fracturado saturado. Los resultados muestran que el saprolito es pobremente transmisivo (T fs = 3 × 10–7 a 8.5 × 10–8 m2 s–1) y que la parte más conductiva del acuífero corresponde a la base del saprolito y la parte superior de la roca fracturada (T = 1.0 × 10–3 a 7.0 × 10–4 m2 s–1). La transmisividad a lo largo del perfil es principalmente controlada por dos zonas conductivas diferentes sin una conexión hidráulica vertical aparente. La transmisividad y el coeficiente de almacenamiento decrecen con la profundidad dependiendo de la saturación de las zonas de fracturas principales, y las perforaciones no son explotables luego de una cierta profundidad (27.5 m en la sección investigada). Las numerosas investigaciones realizadas permiten una cuantificación completa con la profundidad de los parámetros hidrodinámicos a lo largo del perfil meteorizado, y se presenta un modelo conceptual. Se muestran observaciones de hidrogramas (4 años) por ser relevantes para una caracterización de primer orden del medio y de la evolución de la difusividad con la profundidad. La evolución de estos parámetros hidrodinámicos a lo largo del perfil tiene un gran impacto sobre la prospección, explotación y propiedades de transporte del agua subterránea en tales acuíferos de rocas cristalinas.

确定印度南方风化和断裂结晶岩含水层中水动力参数垂直演化:在一个试验场进行研究所获得认识

摘要

由于大量灌溉,印度南方大多数结晶岩含水层都已超采。含水层结构由一个上部为风化腐泥土、下部为断裂带组成,断裂带的断裂密度随深度增加而减少。为了实现可持续管理,应该对印度南方区域的水动力参数(到水系数和储存系数)演化按深度进行量化。在非饱和腐泥土和饱和断裂花岗岩中进行了落差钻孔渗透仪试验、注入试验、流量仪剖面、单封隔器地层试验和抽水试验。结果显示,腐泥土的导水性很差(T fs = 3 × 10–7 to 8.5 × 10–8 m2 s–1),含水层传导性最好的部分就是腐泥土的底部和断裂岩(T = 1.0 × 10–3 to 7.0 × 10–4 m2 s–1)的上部。沿剖面的导水系数主要受控于两个不同的传导带,这两个传导带没有明显的垂直联系。导水系数和储存系数随深度增加而降低,取决于主要断裂带的饱和度,钻孔一定的深度(调查点为27.5米)后无法开采。所进行的众多调查可使沿风化剖面的水动力参数按深度完全量化,提出了概念模型。水位曲线观测结果(4年)作为介质的一级特性描述及随深度的扩散演化关系重大。这些沿剖面的水动力参数对此类结晶岩含水层地下水勘察、开发和传输特性有重大的影响。

Determinação da evolução vertical dos parâmetros hidrodinâmicos em aquíferos de rochas cristalinas alteradas e fraturadas do sul da Índia: perceções a partir de um estudo num local com instrumentação

Resumo

Devido a rega extensiva, a maioria dos aquíferos cristalinos no sul da Índia encontram-se sobrexplorados. A estrutura dos aquíferos corresponde a um saprólito alterado mais superficial, seguido de uma zona vadosa fraturada cuja densidade de fraturação decresce com a profundidade. Para atingir a gestão sustentável, a evolução dos parâmetros hidrodinâmicos (transmissividade e coeficiente de armazenamento) com a profundidade no contexto do sul da Índia deve ser quantificado. No saprólito não saturado e no granito fraturado saturado foram realizados ensaios de rebaixamento com permeâmetros, ensaios de injeção, perfis de medição de caudal, ensaios de packer único e ensaios de bombeamento. Os resultados mostram que o saprólito apresenta uma transmissividade baixa (T fs = 3 × 10–7 a 8.5 × 10–8 m2 s–1) e que a parte mais condutiva do aquífero corresponde à base do saprólito e à parte superior da rocha fraturada (T = 1.0 × 10–3 a 7.0 × 10–4 m2 s–1). A transmissividade ao longo do perfil é principalmente controlada por duas zonas condutivas distintas sem aparente conexão hidráulica vertical. A transmissividade e o coeficiente de armazenamento decrescem ambos com a profundidade, dependendo do grau de saturação das principais zonas de fratura, e as captações não são exploráveis após uma certa profundidade (27.5 m na seção investigada). As numerosas investigações levadas a cabo permitem uma quantificação completa dos parâmetros hidrodinâmicos com a profundidade ao longo do perfil de alteração, e foi apresentado um modelo concetual. Observações hidrográficas (4 anos) mostram-se relevantes para uma caraterização de primeira ordem do meio e da evolução da difusividade com a profundidade. A evolução destes parâmetros hidrodinâmicos ao longo do perfil tem um grande impacte na prospeção hidrogeológica e nas propriedades de exploração e de transporte nestes aquíferos em rochas cristalinas.

Notes

Acknowledgements

This study has been carried out at the Indo-French Centre for Groundwater Research (BRGM-

NGRI). This work has mainly benefited from CARNOT Institute BRGM funding. The Choutuppal Experimental Hydrogeological Park has also benefited from INSU support within

the H+ observatory. Mr. M. Wajiduddin is kindly acknowledged for the fieldwork. The authors are thankful to the editor Jiu J. Jiao and to the reviewers (Ingrid Stober and an anonymous reviewer) for their constructive comments, which greatly enhanced the quality of the manuscript.

References

  1. Acworth RI (1987) The development of crystalline basement aquifers in a tropical environment. Q J Eng Geol 20:265–272CrossRefGoogle Scholar
  2. Agarwal RG (1980) A new method to account for producing time effects when drawdown type curves are used to analyze pressure buildup and other test data. SPE Paper 9289 presented at the 55th SPE Annual Technical Conference and Exhibition, Dallas, TX, 21–24 September 1980Google Scholar
  3. Akkiraju VV, Roy S (2011) Geothermal climate change observatory in south India 1: borehole temperatures and inferred surface temperature histories. Phys Chem Earth Pt B 36:1419–1427CrossRefGoogle Scholar
  4. Aulong S, Chaudhuri B, Farnier L, Galab S, Guerrin J, Himanshu H, Reddy PP (2012) Are South Indian farmers adaptable to global change? A case in an Andhra Pradesh catchment basin. Reg Environ Chang 12(3):423–436CrossRefGoogle Scholar
  5. Banks EW, Simmons CT, Love AJ, Cranswick R, Werner AD, Bestland EA, Wood M, Wilson T (2009) Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeol J 17:1969–1989CrossRefGoogle Scholar
  6. Boisson A, Baisset M, Alazard M, Perrin J, Villesseche D, Kloppmann W, Chandra S, Dewandel B, Picot-Colbeaux G, Ahmed S, Maréchal JC (2014) Comparison of surface and groundwater balance approaches in the evaluation of managed aquifer recharge structure: case of a percolation tank in hard rocks aquifer in India. J Hydrol 519:1620–1633CrossRefGoogle Scholar
  7. Boutt DF, Diggins P, Mabee S (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18:1839–1854. doi: 10.1007/s10040-010-0640-y CrossRefGoogle Scholar
  8. Butler J (1988) Pumping tests in nonuniform aquifers: the radially symmetric case. J Hydrol 101:15–30CrossRefGoogle Scholar
  9. Chatelier M, Ruelleu S, Bour O, Porel G, Delay F (2011) Combined fluid temperature and flow logging for the characterization of hydraulic structure in a fractured karst aquifer. J Hydrol 400:377–386CrossRefGoogle Scholar
  10. Chilton PJ, Foster SSD (1995) Hydrogeological characteristics and water-supply potential of basement aquifers in tropical Africa. Hydrogeol J 3(1):3–49CrossRefGoogle Scholar
  11. Courtois N, Lachassagne P, Wyns R, Blanchin R, Bougaïré FD, Somé S, Tapsoba A (2010) Large-scale mapping of hard-rock aquifer properties applied to Burkina Faso. Ground Water 48:269–283. doi: 10.1111/j.1745-6584.2009.00620.x CrossRefGoogle Scholar
  12. de Condappa (2005) Study of water flow through Vadose Zone on a watershed scale in Hard Rocks aquifers systems: application to the estimation of Maheshwaram Watershed recharge, Andhra Pradesh State, India. PhD Thesis, Univ Joseph Fournier, Toulouse France, 355 ppGoogle Scholar
  13. de Condappa D, Galle S, Dewandel B, Haverkamp R (2008) Bimodal zone of the soil textural triangle: common in tropical and subtropical regions. Soil Sci Soc Am J 72:33. doi: 10.2136/sssaj2006.0343 CrossRefGoogle Scholar
  14. DesRoches A, Danielescu S, Butler K (2014) Structural controls on groundwater flow in a fractured bedrock aquifer underlying an agricultural region of northwestern New Brunswick Canada. Hydrogeol J. doi: 10.1007/s10040-014-1134-0 Google Scholar
  15. Dewandel B, Lachassagne P, Wyns R, Marechal JC, Krishnamurthy NS (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330(1–2):260–284CrossRefGoogle Scholar
  16. Dewandel B, Perrin J, Ahmed S, Aulong S, Hrkal Z, Lachassagne P, Samad M, Massuel S (2010) Development of a decision support tool for managing groundwater resources in semi-arid hard rock regions under variable water demand and climatic conditions. Hydrol Process 24:27884–2797Google Scholar
  17. Dewandel B, Lachassagne P, Zaidi FK, Chandra S (2011) A conceptual hydrodynamic model of a geological discontinuity in hard rock aquifers: example of a quartz reef in granitic terrain in South India. J Hydrol 405(3–4):474–487CrossRefGoogle Scholar
  18. Drew LJ, Schuenemeyer JH, Armstrong TR, Sutphin DM (2001) Initial yield to depth relation for water wells drilled into crystalline bedrock: Pinardville Quadrangle, New Hampshire. Ground Water 39(5):676–684CrossRefGoogle Scholar
  19. Ferrant S, Caballero Y, Perrin J, Gascoin S, Dewandel B, Aulong S, Dazin S, Ahmed S, Maréchal JC (2014) Projected impacts of climate change on farmers’ extraction of groundwater from crystalline aquifers in South India. Sci Rep 4:3697CrossRefGoogle Scholar
  20. Fishman RM, Siegfried T, Raj P, Modi V, Lall U (2011) Over-extraction from shallow bedrock versus deep alluvial aquifers: reliability versus sustainability considerations for India’s groundwater irrigation. Water Resour Res 47:175–179CrossRefGoogle Scholar
  21. Fredlund D, Xing A (1994) Equations for the soil-water characteristic curve. Can Geothechnical J 31:521–532CrossRefGoogle Scholar
  22. GSI (2005) Geological and mineral map of Andhra Pradesh. Geological Survey of India, New DelhiGoogle Scholar
  23. Guihéneuf N, Boisson A, Bour O, Dewandel B, Perrin J, Dausse A, Viossanges M, Chandra S, Ahmed S, Maréchal JC (2014) Groundwater flows in weathered crystalline rocks: impact of piezometric variations and depth-dependent fracture connectivity. J Hydrol 511:320–334CrossRefGoogle Scholar
  24. Gustafson G, Krasny J (1994) Crystalline rock aquifers: their occurrence, use and importance. Appl Hydrogeol 2:64–75CrossRefGoogle Scholar
  25. Jiao JJ, Wang X-S, Nandy S (2005) Confined groundwater zone and slope instability in weathered igneous rocks in Hong Kong. Eng Geol 80:71–92. doi: 10.1016/j.enggeo.2005.04.002 CrossRefGoogle Scholar
  26. Jiménez-Martínez J, Longuevergne L, Le Borgne T, Davy P, Russian A, Bour O (2013) Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: insights from a frequency domain analysis—temporal and spatial scaling in fractured aquifers. Water Resour Res 49:3007–3023. doi: 10.1002/wrcr.20260 CrossRefGoogle Scholar
  27. Keys WS (1990) Borehole geophysics applied to ground-water investigations. In: Techniques of Water-Resources Investigations of the United States Geological Survey, book 2, USGS, Reston, VA, 150 ppGoogle Scholar
  28. Klepikova MV, Le Borgne T, Bour O, Davy P (2011) A methodology for using borehole temperature-depth profiles under ambient, single and cross-borehole pumping conditions to estimate fracture hydraulic properties. J Hydrol 407:145–152Google Scholar
  29. Kumar R, Singh RD, Sharma KD (2005) Water resources of India. Curr Sci India 89(5):794–811Google Scholar
  30. Le Borgne T, Bour O, Paillet FL, Caudal J-P (2006) Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. J Hydrol 328:347–359. doi: 10.1016/j.jhydrol.2005.12.029 CrossRefGoogle Scholar
  31. MacDonald A, Bonsor H, Dochartaigh BE, Taylor R (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7:024009. doi: 10.1088/1748-9326/7/2/024009 CrossRefGoogle Scholar
  32. Maréchal JC (2010) Editor’s message: the sunk cost fallacy of deep drilling. Hydrogeol J 18:287–289CrossRefGoogle Scholar
  33. Maréchal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour Res 40:W11508Google Scholar
  34. Maréchal JC, Dewandel B, Ahmed S, Galeazzi L, Zaidi FK (2006) Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J Hydrol 329(1–2):281–293CrossRefGoogle Scholar
  35. Mayo AL, Morris TH, Peltier S, Petersen EC, Payne K, Holman LS, Tingey D, Fogel T, Black BJ, Gibbs TD (2003) Active and inactive groundwater flow systems: evidence from a stratified, mountainous terrain. GSA Bull 115(12):1456–1472CrossRefGoogle Scholar
  36. Mbonimpa M, Aubertin M, Chapuis RP, Bussière B (2002) Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotech Geol Eng 20:235–259CrossRefGoogle Scholar
  37. Mukherji A, Shah T (2005) Groundwater socio-ecology and governance: a review of institutions and policies in selected countries. Hydrogeol J 13(1):328–345CrossRefGoogle Scholar
  38. Paillet FL (1998) Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water Resour Res 34:997–1010CrossRefGoogle Scholar
  39. Perrin J, Ahmed S, Hunkeler D (2011a) The effects of geological heterogeneities and piezometric fluctuations on groundwater flow and chemistry in a hard-rock aquifer, southern India. Hydrogeol J 19:1189–1201CrossRefGoogle Scholar
  40. Perrin J, Mascre C, Pauwels H, Ahmed S (2011b) Solute recycling: an emerging threat to groundwater quality in southern India? J Hydrol 398(1–2):144–154CrossRefGoogle Scholar
  41. Pettenati M, Perrin J, Pauwels H, Ahmed S (2013) Simulating fluoride evolution in groundwater using a reactive multicomponent transient transport model: application to a crystalline aquifer of southern India. Appli Geochem 29:102–116CrossRefGoogle Scholar
  42. Philip JR (1993) Approximate analysis of falling-head lined borehole permeameter. Water Resour Res 21:1025–1033CrossRefGoogle Scholar
  43. Reddy DV, Nagabhushanam P, Sukhija BS, Reddy AGS (2009) Understanding hydrological processes in a highly stressed granitic aquifer in southern India. Hydrol Process 23:1282–1294CrossRefGoogle Scholar
  44. Renard P, Glenz D, Mejias M (2009) Understanding diagnostic plots for well-test interpretation. Hydrogeol J 17:589–600. doi: 10.1007/s10040-008-0392-0 CrossRefGoogle Scholar
  45. Reynolds WD (2010) Measuring soil hydraulic properties using a cased borehole permeameter: steady flow analyses. Vadose Zone J 9:637–652CrossRefGoogle Scholar
  46. Reynolds WD (2011) Measuring soil hydraulic properties using a cased borehole permeameter: falling head analysis. Vadose Zone J 10:999–1015CrossRefGoogle Scholar
  47. Roques C, Bour O, Aquilina L, Dewandel B, Leray S, Schroetter J, Longuevergne L, Le Borgne T, Hochreutener R, Labasque T, Lavenant N, Vergnaud-Ayraud V, Mougin B (2014) Hydrological behavior of a deep sub-vertical fault in crystalline basement and relationships with surrounding reservoirs. J Hydrol 509:42–54. doi: 10.1016/j.jhydrol.2013.11.023 CrossRefGoogle Scholar
  48. Ruiz L, Varma MRR, Kumar MSM, Sekhar M, Maréchal JC, Descloitres M, Riotte J, Kumar S, Kumar C, Braun JJ (2010) Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): regolith matric storage buffers the groundwater recharge process. J Hydrol 380(3–4):460–472CrossRefGoogle Scholar
  49. Shah T, Deb Roy A, Qureshi AS, Wang J (2003) Sustaining Asia’s groundwater boom: an overview of issues and evidence. Nat Resour Forum 27:130–141CrossRefGoogle Scholar
  50. Stober I, Bucher K (2007) Hydraulic properties of the crystalline basement. Hydrogeol J 15:213–224. doi: 10.1007/s10040-006-0094-4 CrossRefGoogle Scholar
  51. Sukhija BS, Reddy DV, Nagabhushanam P, Bhattacharya SK, Jani RA, Kumar D (2006) Characterisation of recharge processes and groundwater flow mechanisms in weathered-fractured granites of Hyderabad (India) using isotopes. Hydrogeol J 14:663–674CrossRefGoogle Scholar
  52. Taylor RG, Howard KWF (2000) A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda. Hydrogeol J 8:279–294CrossRefGoogle Scholar
  53. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am Geophys Union Trans 16:519–524CrossRefGoogle Scholar
  54. Van der Hoven SJ, Solomon DK, Moline GR (2003) Modeling unsaturated flow and transport in the saprolite of fractured sedimentary rocks: effects of periodic wetting and drying. Water Resour Res 39(7):1186Google Scholar
  55. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  56. White AF, Bullen TD, Schulz MS, Blum AE, Huntington TG, Peters NE (2001) Differential rates of feldspar weathering in granitic regoliths. Geochem Cosmochem Acta 65(6):847–869CrossRefGoogle Scholar
  57. Wyns R, Gourry JC, Baltassat JM, Lebert F (1999) Caractérisation multiparamètres des horizons de subsurface (0–100 m) en contexte de socle altéré [Multiparameter characterisation of subsurface horizons (0-100 m) in weathered basement context]. BRGM, Orleans, FranceGoogle Scholar
  58. Wyns R, Baltassat JM, Lachassagne P, Legtchenko A, Vairon J (2004) Application of proton magnetic resonance soundings to groundwater reserves mapping in weathered basement rocks (Brittany, France). Bull Soc Géol France 175:21–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Boisson
    • 1
  • N. Guihéneuf
    • 1
    • 2
  • J. Perrin
    • 1
  • O. Bour
    • 2
  • B. Dewandel
    • 3
  • A. Dausse
    • 1
  • M. Viossanges
    • 1
  • S. Ahmed
    • 4
  • J. C. Maréchal
    • 3
  1. 1.BRGM, D3E/NREIndo-French Centre for Groundwater ResearchHyderabadIndia
  2. 2.OSUR, Géosciences RennesUMR6118 CNRSRennes cedexFrance
  3. 3.BRGMD3E/NREMontpellierFrance
  4. 4.National Geophysical Research InstituteIndo-French Centre for Groundwater ResearchHyderabadIndia

Personalised recommendations