Advertisement

Hydrogeology Journal

, Volume 23, Issue 3, pp 467–491 | Cite as

Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA)

  • John A. IzbickiEmail author
  • Nicholas F. Teague
  • Paul B. Hatzinger
  • J. K. Böhlke
  • Neil C. Sturchio
Report

Abstract

Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.

Keywords

USA Contamination Groundwater flow Hydrochemistry Groundwater recharge 

Recharge, circulation des eaux souterraines et présence de perchlorate dans un aquifère alluvial faillé de Californie (Etats-Unis d’Amérique)

Résumé

Le perchlorate d’origine militaire, industrielle ou agricole est présent au sein de l’aquifère alluvial du sous-bassin souterrain de Rialto-Colton situé à 80 km à l’est de Los Angeles (Etats-Unis d’Amériques). Ce secteur est fortement faillé et présente des différences piézométriques dépassant 60 m de part et d’autre de la faille de Rialto-Colton séparant les sous-bassins souterrains de Rialto-Colton et de Chino. Les données combinées de flux de puits de forage et de qualité des eaux à diverses profondeurs montrent une diminution du rendement des puits et des changements de la composition chimique et isotopique des eaux, reflétant ainsi un changement des propriétés aquifères et de l’origine de la recharge avec la profondeur. Les flux de perchlorate, au travers de quelques forages sous des conditions de sous-exploitation, des couches de surface vers les niveaux plus profonds situés sous le panache identifié peuvent atteindre 13 kg/an. La carte piézométrique indique des flux d’eau potentiels le long de la faille de Rialto-Colton au travers des aquifères perchés sus-jacents. Les flux ascendants au travers d’un puits du sous-bassin de Chino, proche de la faille de Rialto-Colton, suggèrent de possibles mouvements d’eau au travers de la faille et au sein de couches perméables ayant, en profondeur, des dépôts partiellement consolidés. Quoique potentiellement importants localement, les mouvements d’eau à partir du sous-bassin de Rialto-Colton ne semblent pas avoir entrainé la présence généralisée de perchlorate dans le sous-bassin de Chino. Les concentrations en nitrate et perchlorate dans la nappe phréatique, associées aux utilisations agricoles de fertilisants, peuvent être sous-estimées du fait d’un mélange d’eau de différentes origines selon les profondeurs au sein des forages crépinés sur de grandes longueurs.

Movimiento de agua subterránea, recarga, y presencia de perclorato en un acuífero aluvial fallado en California (EEUU)

Resumen

El perclorato proveniente de fuentes militares, industriales y de antiguas prácticas agrícolas se presenta dentro de un acuífero aluvial en la subcuenca de agua subterránea de Rialto-Colton, 80 km al este de Los Ángeles, California (EEUU). El área está ampliamente fallada, con diferencias de nivel de agua que exceden 60 m a través de las partes de la falla de Rialto-Colton que separa las subcuencas de agua subterránea de Rialto-Colton y Chino. Los datos de flujo de los pozos acoplados con los de calidad del agua dependiente de la profundidad muestran una disminución en el rendimiento de los pozos y cambios en la composición química e isotópica del agua, lo que refleja cambios en las propiedades del acuífero y en las fuentes de recarga de agua subterránea con la profundidad. El movimiento del perclorato a través de algunos pozos bajo condiciones de no bombeo de capas someras a profundas subyacentes a plumas mapeadas llega a un nivel tan alto como 13 kg/año. Los mapas de nivel de agua sugieren un movimiento potencial de agua subterránea transversal a la falla de Rialto-Colton a través de un acuífero suprayacente colgado. El fujo ascendente a través de un pozo en la subcuenca de Chino cerca de la falla de Rialto-Colton sugiere un movimiento potencial de agua subterránea transversal a la falla a través de capas permeables dentro de depósitos parcialmente consolidados en profundidad. Aunque localmente son potencialmente importantes, el movimiento de agua subterránea de la subcuenca de Rialto-Colton no ha dado lugar a numerosos casos de perclorato dentro de la subcuenca Chino. Las concentraciones de nitrato y perclorato en el agua freática, asociada con el uso de fertilizantes de antiguas prácticas agrícolas, puede ser subestimada por los datos provenientes de pozos de filtros largos que mezclan agua de diferentes profundidades dentro del acuífero.

(美国)加利佛尼亚州一个断陷冲积含水层中地下水的运移、补给和高氯盐酸的赋存

摘要

在(美国)加利佛尼亚州洛杉矶以东80公里Rialto-Colton地下水次流域一个冲积含水层内存在着来源于军事、工业及农业的高氯酸盐。本地区广泛断陷,穿过Rialto-Colton断层的水位差超过60米,Rialto-Colton断层分隔着Rialto-Colton次流域和Chino次流域。耦合的井-孔水流和与深度有关的水质资料显示了出水量降低及水化学和同位素组成的变化,反应出含水层特性及地下水补给源随深度而变化。高氯酸盐在未抽水条件下通过一些井从浅层流向深层的量高达每年13千克。水位图显示了地下水穿越Rialto-Colton断层运移通过上覆表层含水层的潜在可能性。Rialto-Colton断层附近Chino次流域水井中向上的水流显示了地下水穿越断层通过深部部分固结沉积层内透水层的潜在可能性。尽管局部上说可能非常重要,但Rialto-Colton次流域的地下水运移并没有导致Chino次流域内大范围出现高氯酸盐。地下水位处的硝酸盐和高氯酸盐含量与农业上使用化肥有关,长滤水管井混合了含水层内不同深度的水,由此得出的资料可能低估了硝酸盐和高氯酸盐的含量。

Movimento de águas subterrâneas, recarga, e ocorrência de perclorato num aquífero aluvionar fraturado na Califórnia (EUA)

Resumo

Num aquífero aluvionar na sub-bacia de águas subterrâneas de Rialto-Colton, 80 km a este de Los Angeles, Califórnia (EUA), existe perclorato de origens militar, industrial e agrícola. A área apresenta extensas falhas, com diferenças de níveis piezométricos que excedem os 60 m nos dois lados da Falha de Rialto-Colton, que separa as sub-bacias hidrogeológicas de Rialto-Colton e de Chino. Os dados combinados de escoamento em furos e de qualidade da água em função da profundidade mostram descidas no caudal dos furos e alterações na composição química e isotópica, refletindo que as propriedades do aquífero e as origens da recarga de água subterrânea se alteram com a profundidade. O movimento do perclorato das camadas mais superficiais para as mais profundas, subjacentes a plumas cartografadas, atingiu 13/por ano em alguns furos sem bombeamento. Mapas dos níveis piezométricos sugerem o movimento potencial de águas subterrâneas através da falha de Rialto-Colton a partir de um aquífero suspenso sobrejacente. O fluxo ascendente por um furo na sub-bacia de Chino próxima da falha de Rialto-Colton sugere movimento potencial de água subterrânea cruzando a falha através de camadas permeáveis dentro de depósitos parcialmente consolidados em profundidade. Apesar de potencialmente importante localmente, o movimento de água subterrânea da sub-bacia Rialto-Colton não resultou numa ocorrência generalizada de perclorato na sub-bacia de Chino. As concentrações de nitrato e de perclorato no nível freático, associadas com o legado do uso de fertilizantes agrícolas, podem ser subestimadas por dados de furos com ralos drenantes extensos que misturam águas de diferentes profundidades dentro do aquífero.

Notes

Acknowledgements

This work was funded by the United States Department of Defense (DOD) Environmental Security Technology Certification Program (ESTCP). Additional funding was provided cooperatively by the San Bernardino Valley Municipal Water District (SBVMWD) in cooperation with the US Geological Survey (USGS), and by the US Environmental Protection Agency (US EPA). The authors thank local stakeholders, their staff, and their consultants who provided data, access to wells, and input to the project, including review of this manuscript, through the Technical Advisory Committee (TAC). Collection of well-bore flow and depth-dependent water-chemistry data from wells in this study would not have been possible without the support and assistance of Fontana Water District, City of Rialto, County of San Bernardino, and the US EPA.

Supplementary material

10040_2014_1217_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1214 kb)

References

  1. Anderson M, Roberts C, Jachens R (2000) Principal facts for gravity stations in the vicinity of San Bernardino, southern California. US Geol Surv Open File Report 00–193, 32 pp. http://pubs.usgs.gov/of/2000/0193/. Accessed 29 October 2014
  2. Anderson M, Matti J, Jachens R (2004) Structural model of the San Bernardino basin, California, from analysis of gravity, aeromagnetic, and seismicity data. J Geophys Res 109(B04404):1–20Google Scholar
  3. Andraski BJ, Jackson WA, Welborn TL, Böhlke JK, Sevanthi R, Stonestrom DA (2014) Soil, plant, and terrain effects on natural perchlorate distribution in a desert landscape. J Environ Qual 43:980–994CrossRefGoogle Scholar
  4. Belitz K, Hamlin SN, Burton CA, Kent R, Fay RG, Johnson T (2004) Water quality in the Santa Ana Basin, California, 1999–2001. US Geol Surv Circ File 1238, 37 pp. http://pubs.usgs.gov/circ/2004/1238/pdf/circular1238.pdf. Accessed 29 October 2014
  5. Bense VF, Van Balen RT, DeVries JJ (2003) The impact of faults on the hydrogeological conditions in the Roer Valley Rift System: an overview. Neth J Geosci 82(1):41–54Google Scholar
  6. Böhlke JK, Sturchio NC, Gu B, Horita J, Brown GM, Jackson WA, Batista J, Hatzinger PB (2005) Perchlorate isotope forensics. Anal Chem 77:7838–7842CrossRefGoogle Scholar
  7. Böhlke JK, O’Connell ME, Prestegaard KL (2007) Ground-water stratification and delivery of nitrate to an incised stream in varying flow conditions. J Environ Qual 36:664–680CrossRefGoogle Scholar
  8. Böhlke JK, Hatzinger PB, Sturchio NC, Gu B, Abbene I, Mroczkowski J (2009) Atacama perchlorate as an agricultural contaminant in groundwater: isotopic and chronological evidence from Long Island, New York. Envron Sci Technol 43(15):5619–5625CrossRefGoogle Scholar
  9. Böttcher J, Strebel O, Voerkelius S, Schmidt HL (1990) Using isotope fractionation of nitrate-nitrogen and nitrate oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114:413–424CrossRefGoogle Scholar
  10. Brandhuber P, Clark S, Morley K (2009) A review of perchlorate occurrence in public drinking water systems. JAWWA 101(11):63–73Google Scholar
  11. Bredehoeft JD, Belitz K, Sharp-Hansen S (1992) The hydrodynamics of the Big Horn Basin: a study of the role of faults. Am Assoc Petrol Geol Bull 76(40):530–546Google Scholar
  12. Caine JS, Minor SA (2009) Structural and geochemical characteristics of faulted sediments and inferences on the role of water in deformation, Rio Grande Rift, New Mexico. Geol Soc Am Bull 121(9/10):1325–1340CrossRefGoogle Scholar
  13. Caine JS, Minor SA, Grauch VJS, Hudson MR (2002) Potential for fault zone compartmentalization of groundwater aquifers in poorly lithified, Rio Grande rift-related sediments, New Mexico. Geol Soc Am (Abs) 34(4):59Google Scholar
  14. California Department of Public Health (2007) Perchlorate in drinking water. California Department of Water Resources, Sacramento, CA. http://www.cdph.ca.gov/certlic/drinkingwater/pages/Perchlorate.aspx. Accessed 8 August 2012
  15. California Department of Water Resources (2004) California’s groundwater: Upper Santa Ana Valley groundwater, Rialto-Colton subbasin. Bull. 118, California Department of Water Resources, Sacramento, CA. http://www.water.ca.gov/pubs/groundwater/bulletin_118/basindescriptions/8-2.04.pdf. Accessed 26 February 2013
  16. Catchings R, Rymer M, Goldman M, Gandhok G, and Steedman C (2008) Structure of the San Bernardino Basin along two seismic transects: Rialto-Colton fault to the San Andreas fault and along the I-215 Freeway (I-10 to SR30). US Geol Surv Open File Report 2008–1197, 70 pp. http://pubs.usgs.gov/of/2008/1197/. Accessed 29 October 2014
  17. CH2M-Hill (2012) Final numerical groundwater flow model report, Rialto-Colton basin. Prepared for the US EPA, CH2M-Hill, Reading, CA, variously pagedGoogle Scholar
  18. Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol 2:569–580CrossRefGoogle Scholar
  19. Coplen TB, Hopple JA, Böhlke JK, Peiser HS, Rieder, SE, Krouse HR, Rosman KJR, Ding T, Vocke RD, Revesz KM, Lamberty A, Taylor P, De Bievre P (2002) Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. US Geol Surv Water Resour Invest Rep 01–4222, 98 pp. http://pubs.usgs.gov/wri/wri014222/. Accessed 29 October 2014
  20. Craig H (1961) Isotopic variations in natural waters. Science 133:1702–1703CrossRefGoogle Scholar
  21. Dafny E, Gvirtzman H, Burg A (2013) Identifying watershed-scale groundwater flow barriers: the Yoqne’am Fault in Israel. Hydrogeol J 21:1035–1051CrossRefGoogle Scholar
  22. DPRA Inc (2008) Draft site inspection report: perchlorate, trichloroethene and other hazardous substances with the Rialto-Colton Groundwater basin, County of San Bernardino, CA. DPRA Project no. 004569, DPRA, San Marcos, CA, variously pagedGoogle Scholar
  23. Dutcher L, Garrett A (1963) Geologic and hydrologic features of the San Bernardino area, California: with special reference to underflow across the San Jacinto fault. US Geol Surv Water Supply Pap 1419, 114 pp. http://pubs.er.usgs.gov/publication/wsp1419. Accessed 29 October 2014
  24. Eckis R (1928) Alluvial fans of the Cucamonga district, southern California. J Geol 36:225–247CrossRefGoogle Scholar
  25. Folch A., Mas-Pla J (2008) Hydrogeological interactions between fault zones and alluvial aquifers in regional flow systems. Hydro. Proces. 22:3476–3487Google Scholar
  26. Forster CB, Evans JP (1991) Hydrogeology of thrust faults and crystalline thrust sheets: results of combined field and modeling studies. Geophys Res Lett 18(5):979–982Google Scholar
  27. Fram MS, Belitz K (2011) Probability of detecting perchlorate under natural conditions in deep groundwater in California and the southwestern United States. Environ Sci Technol 45(4):1271–1277. doi: 10.1021/es103103p CrossRefGoogle Scholar
  28. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 604 ppGoogle Scholar
  29. GeoLogic Associates (1997) Evaluation monitoring program, Phase I Point-of-Compliance Study, Mid-Valley Sanitary Landfill. Prepared for County of San Bernardino Waste System Division, Geologic, Claremont, CAGoogle Scholar
  30. GeoLogic Associates (1998) Phase II (Offsite) Evaluation monitoring program, Mid-Valley Sanitary Landfill, County of San Bernardino, California, Anaheim, CA. Geologic, Claremont, CA, variously pagedGoogle Scholar
  31. GeoLogic Associates (2003) Perchlorate Investigation in the Vicinity of the Mid Valley Sanitary Landfill. San Bernardino, California, Anaheim, CA, Geologic, Claremont, CA, variously pagedGoogle Scholar
  32. GeoLogic Associates (2010) Updated hydrogeologic model of perchlorate transport conditions in the northern RCB. San Bernardino County, California, Anaheim, CA, Geologic, Claremont, CA, variously pagedGoogle Scholar
  33. GeoLogic Associates (2013) First quarter (winter) 2013 monitoring report Rialto GWTS perchlorate and VOC investigation, San Bernardino County, California, Anaheim, CA, Geologic, Claremont, CA, variously pagedGoogle Scholar
  34. GeoLogic Associates (2002) Environmental audit, potential sources of perchlorate impacts, Rialto-Colton Groundwater Basin. San Bernardino County, California, Anaheim, CA, Geologic, Claremont, CA, variously pagedGoogle Scholar
  35. GeoSyntec Consultants (2006) Additional interim remedial investigation report. Prepared for Goodrich Corporation, GeoSyntec, Atlanta, GA, 127 ppGoogle Scholar
  36. Gosling AW (1967) Patterns of subsurface flow in the Bloomington-Colton Area Upper Santa Ana Valley, California. US Geol Surv Hydrol Invest Atlas HA-268, 1 mapGoogle Scholar
  37. Government Accountability Office (2010) Perchlorate: occurrence is widespread but at varying levels. 63 pp. http://www.gao.gov/new.items/d10769.pdf. Accessed 8 August 2012
  38. Granger J, Sigman DM, Lehmann MF, Tortell PD (2008) Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr 53:2533–2545CrossRefGoogle Scholar
  39. Hatzinger P, Böhlke JK, Sturchio NC, Gu B, Heraty LJ, Borden RC (2009) Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer. Environ Chem 6:44–52. http://www.publish.csiro.au/?paper=EN09008. Accessed 29 October 2014
  40. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102CrossRefGoogle Scholar
  41. IAEA (1981) Stable isotope hydrology. Technical report series no. 210, Vienna, Austria, International Atomic Energy Agency, Vienna, 339 ppGoogle Scholar
  42. Izbicki JA (2003) Source and movement of ground water in the western part of the Mojave Desert, southern California, USA. US Geol Surv Water Resour Invest Rep 03–4313, 28 pp. http://pubs.er.usgs.gov/publication/wri034314. Accessed 29 October 2014
  43. Izbicki JA (2004) A small-diameter sample pump for collection of depth-dependent samples from production wells under pumping conditions: US Geol Surv Fact Sheet 2004–3096. http://pubs.usgs.gov/fs/2004/3096/. Accessed 29 October 2014
  44. Izbicki JA (2014) Fate of nutrients in shallow groundwater receiving treated septage, Malibu, CA. Ground Water 52:218–233. doi  10.1111/gwat.12194/full
  45. Izbicki JA, Danskin WR, Mendez GO (1998) Chemistry and isotopic composition of ground water along a section near the Newmark area, San Bernardino County, California. US Geol Surv Water Resour Invest Rep 97–4179, 27 ppGoogle Scholar
  46. Izbicki JA, Christensen AH, Hansen RT (1999) U.S. Geological Survey combined well-bore flow and depth-dependent water sampler. US Geol Surv Fact Sheet 196–199, 2 pp. http://ca.water.usgs.gov/archive/reports/fs19699.pdf. Accessed 29 October 2014
  47. Jackson WA, Böhlke J, Gu B, Hatzinger P, Sturchio NC (2010) Stable isotope composition of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States. Environ Sci Technol 44:4869–4876CrossRefGoogle Scholar
  48. Kalin RM (2000) Radiocarbon dating of groundwater systems, chap 4. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 111–144CrossRefGoogle Scholar
  49. Kendall C, Aravena R (2000) Nitrate isotopes in groundwater systems. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 261–297CrossRefGoogle Scholar
  50. Kent R, Landon MK (2012) Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: influence of legacy land use. Sci Total Environ 452-453C(2013):125–136Google Scholar
  51. Lieberman MT, Borden RC (2008) Natural attenuation of perchlorate in groundwater processes, tools, and monitoring techniques. ESTCP Project ER-0428, US Dept. of Defense, Washington, DC, 58 ppGoogle Scholar
  52. Lippincott JB (1902) Development and application of water near San Bernardino, Colton, and Riverside, California. US Geol Surv Water Supply Pap 59, 95 ppGoogle Scholar
  53. Lu Z, Danskin W (2001) InSAR analysis of natural recharge to define structure of a ground-water basin, San Bernardino, California. Geophys Res Lett 28:2661–2664CrossRefGoogle Scholar
  54. McMahon PB, Böhlke JK (2006) Regional patterns in the isotopic composition of natural and anthropogenic nitrate in groundwater, High Plains, USA. Environ Sci Technol 40:2965–2970. doi: 10.1021/es052229q CrossRefGoogle Scholar
  55. Mook WG (1980) Carbon-14 in hydrogeological studies. In: Fritz P, Fontes JCh (eds) Handbook of environmental isotope geochemistry. Springer, Heidelberg, Germany, pp 49–74Google Scholar
  56. Motzer WE (2001) Perchlorate: problems, detection, and solutions. Environ Forensics 2(4):301–311. doi: 10.1006/enfo.2001.0059 CrossRefGoogle Scholar
  57. Neter J, Wasserman W (1974) Applied linear statistical models. Irwin, Homewood, IL, 842 ppGoogle Scholar
  58. Paulinski S (2012) Structural, hydrogeologic framework and textural model of the Rialto-Colton basin and the Chino and North Riverside area. MSc Thesis, California State Univ., Sacramento, CA, USA, 171 ppGoogle Scholar
  59. Rao B, Anderson TA, Orris GJ, Rainwater KA, Rajagopalan S, Sandvig RM, Scanlon BR, Stonestrom DA, Walvoord MA, Jackson WA (2007) Widespread natural perchlorate in unsaturated zones of the southwest United States. Environ Sci Technol 41(13):4522–4528. doi: 10.1021/es062853i CrossRefGoogle Scholar
  60. Smith LC, Forster C, Evans J (1990) Interaction of fault zones, fluid flow, and heat transfer at the basin scale. Hydrogeol Low-Perm Environ 2:41–67Google Scholar
  61. Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley, New York, 1022 ppGoogle Scholar
  62. Sturchio NC, Beloso AD, Böhlke JK, Streger SH, Heraty LJ, Hatzinger PB (2007a) Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: laboratory results and implications for forensics and natural attenuation studies. Environ Sci Technol 41:2796–2802CrossRefGoogle Scholar
  63. Sturchio NC, LeClaire JP, Beloso AD, Heraty L, Manning KR, Corsinita PJ (2007b) Use of stable isotopes as a forensic tool to determine sources of perchlorate in groundwater in the Chino basin, California. Groundwater Resources Association of California Symposium: Isotope Methods for Groundwater Investigations. Concord, CA, March 2007, AbstractGoogle Scholar
  64. Sturchio NC, Caffee M, Beloso AD, Heraty LJ, Böhlke JK, Hatzinger PB, Jackson WA, Gu B, Heikoop JM, Dale M (2009) Chlorine-36 as a tracer of perchlorate origin. Environ Sci Technol 43:6934–6938CrossRefGoogle Scholar
  65. Sturchio NC, Beloso A, Heraty LJ, Wheatcraft S, Schumer R (2014) Isotopic tracing of perchlorate sources in groundwater from Pomona, California. Appl Geochem 43:80–87CrossRefGoogle Scholar
  66. Stute M, Schlosser P (2000) Atmospheric noble gases. In: Cook P, Herezeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, 529 ppGoogle Scholar
  67. Teague N, Brown A, Woolfenden L (2014) Geohydrologic and water quality data in the vicinity of the Rialto-Colton Fault, San Bernardino, California. US Geol Surv Data Series 813, 29 pp. http://pubs.er.usgs.gov/publication/ds813. Accessed 29 October 2014
  68. US EPA (2002) Perchlorate environmental contamination: toxicological review and risk characterization. NCEA-1-0503, US EPA, Washington, DC, variously paged. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=24002#Download. Accessed 8 August 2012
  69. US EPA (2004) Maximum perchlorate concentrations between January 2003 and August 2004, Rialto-Colton basin, San Bernardino, County, California. US EPA Region 9, San Francisco, CA, 1 mapGoogle Scholar
  70. US EPA (2010) Interim action record of decision: source area operable unit B.F. Goodrich Superfund Site, San Bernardino County, CA. EPA ID: CAN000905945, 30 September 2010. US EPA, Region 9, San Francisco, CA, variously paged. http://yosemite.epa.gov/r9/sfund/r9sfdocw.nsf/3dc283e6c5d6056f88257426007417a2/f03db7a027c1e568882577b4006a02fc!OpenDocument. Accessed 26 February 2013
  71. Wibberley C, Yielding G, DiToro G (2008) Recent advances in the understanding of fault zone internal structure: a review. Geol Soc Lond Spec Publ 299:5–33CrossRefGoogle Scholar
  72. Wildermuth Environmental Inc. (2000) Groundwater elevation contours and management zone boundaries in TIN/TDS study, Fall 1997: phase 2A of the Santa Ana Watershed. Final Technical Memorandum, Wildermuth, Lake Forest, CA, variously pagedGoogle Scholar
  73. Wildermuth Environmental Inc. (2003) Chino basin dry-year program modeling report. Wildermuth, Lake Forest, CA, variously pagedGoogle Scholar
  74. Wisely A, Schmidt D (2010) Deciphering vertical deformation and poroelastic parameters in a tectonically active fault-bounded aquifer using InSAR and well level data, San Bernardino basin, California. Geophys J Int 181:1185–1200Google Scholar
  75. Woolfenden LR (2007) Aquifer susceptibility to perchlorate contamination in a highly urbanized basin. In: Trefry MG (ed) Securing groundwater quality in urban and industrial environments. Proceedings of the International Association of Hydrologic Scientists, Groundwater Quality 2007, Fremantle, Western Australia, Dec. 2–7, IAHS Pub. 324, IAHS, Wallingford, UK, pp 156–161,1 CD-ROMGoogle Scholar
  76. Woolfenden L, Kadhim D (1997) Geohydrology and water chemistry in the Rialto-Colton Basin, San Bernardino County, California. US Geol Surv Water Resour Invest Rep 97–4012, 101 ppGoogle Scholar
  77. Woolfenden L, Koczot K (2001) Numerical simulation of ground-water flow and assessment of the effects of artificial recharge in the Rialto-Colton Basin, San Bernardino County, California. US Geol Surv Water Resour Invest Rep 00–4243, 147 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Authors and Affiliations

  • John A. Izbicki
    • 1
    Email author
  • Nicholas F. Teague
    • 2
  • Paul B. Hatzinger
    • 3
  • J. K. Böhlke
    • 4
  • Neil C. Sturchio
    • 5
  1. 1.US Geological SurveySan DiegoUSA
  2. 2.US Geological Survey, California WSC USASan DiegoUSA
  3. 3.CB&I Federal ServicesLawrencevilleUSA
  4. 4.US Geological Survey, National Research ProgramRestonUSA
  5. 5.Department of Geological SciencesUniversity of DelawareNewarkUSA

Personalised recommendations