Advertisement

Hydrogeology Journal

, Volume 23, Issue 2, pp 319–334 | Cite as

To what extent do long-duration high-volume dam releases influence river–aquifer interactions? A case study in New South Wales, Australia

  • P. W. GrahamEmail author
  • M. S. Andersen
  • M. F. McCabe
  • H. Ajami
  • A. Baker
  • I. Acworth
Report

Abstract

Long-duration high-volume dam releases are unique anthropogenic events with no naturally occurring equivalents. The impact from such dam releases on a downstream Quaternary alluvial aquifer in New South Wales, Australia, is assessed. It is observed that long-duration (>26 days), high-volume dam releases (>8,000 ML/day average) result in significant variations in river–aquifer interactions. These variations include a flux from the river to the aquifer up to 6.3 m3/day per metre of bank (at distances of up to 330 m from the river bank), increased extent and volume of recharge/bank storage, and a long-term (>100 days) reversal of river–aquifer fluxes. In contrast, during lower-volume events (<2,000 ML/day average) the flux was directed from the aquifer to the river at rates of up to 1.6 m3/day per metre of bank. A groundwater-head prediction model was constructed and river–aquifer fluxes were calculated; however, predicted fluxes from this method showed poor correlation to fluxes calculated using actual groundwater heads. Long-duration high-volume dam releases have the potential to skew estimates of long-term aquifer resources and detrimentally alter the chemical and physical properties of phreatic aquifers flanking the river. The findings have ramifications for improved integrated management of dam systems and downstream aquifers.

Keywords

Surface water hydrology Dam releases Groundwater/surface-water relations Water management Australia 

Dans quelle mesure les lâchers de barrages de longue durée et gros volume influencent-ils les interactions nappe–rivière? Une étude de cas en Nouvelle-Galles du Sud, Australie

Résumé

Les lâchers de barrages de longue durée et gros volume sont des évènements d’origine anthropiques uniques qui n’ont pas d’équivalent dans la nature. L’impact de tels lâchers de barrage sur un aquifère alluvial quaternaire en aval, en Nouvelle-Galles du Sud en Australie, est évalué. Il est observé que les lâchers de longue durée (>26 jours) et de volume important (>8000 ML/jour en moyenne) entrainent des variations significatives des interactions nappe–rivière. Ces variations comprennent un flux en provenance de la rivière vers l’aquifère allant jusqu’à 6.3 m3/jour par mètre de berge (à des distances allant jusqu’à 330 m de la rive), une augmentation de l’étendue et du volume de la recharge/emmagasinement dans les berges, et une inversion du sens des flux rivière–aquifère, sur une longue durée (>100 jours). En revanche, pendant les événements de faible-volume (<2000 ML/jour en moyenne) le flux a été dirigé de l’aquifère vers la rivière à un débit jusqu’à 1.6 m 3/jour par mètre de berge. Un modèle de prévision des charges d’eau souterraine a été construit et les flux rivière–aquifère ont été calculés; cependant, les prévisions de flux provenant de cette méthode ont montré une faible corrélation avec les flux calculés à l‘aide des charges réelles d’eaux souterraines. Les lâchers de barrages de longue durée et gros volume ont la capacité de biaiser des évaluations des ressources aquifères à long terme et d’altérer les propriétés chimiques et physiques des nappes phréatiques bordant la rivière. Les résultats ont des conséquences pour l’amélioration de la gestion intégrée des systèmes barrages et des aquifères en aval.

En qué medida los vertidos de larga duración y alto volumen de los diques influyen en la interacción río–acuífero? Un estudio de caso en Nueva Gales del Sur, Australia

Resumen

Los vertidos de larga duración y alto volumen son episodios antropogénicos únicos sin ningún equivalente de ocurrencia en la naturaleza. Se evaluó el impacto de tales vertidos de los diques sobre un acuífero aluvial corriente abajo del Cuaternario en Nueva Gales del Sur, Australia. Se observa que los vertidos de larga duración (>26 días, altos volúmenes (>8,000 ML/día de promedio) dan como resultado variaciones significativa de las interacciones río–acuífero. Estas variaciones incluyen un flujo desde el río al acuífero de hasta 6.3 m3/día por metro de margen (a distancias de hasta 330 m desde la margen del río), un incremento en la extensión y volumen del almacenamiento en la margen, y a largo plazo (>100 días) una inversión de los flujos río–acuífero. En contraste, durante los episodios de volúmenes más bajos (<2,000 ML/día de promedio) el flujo directo fue desde el acuífero al río en ritmos de hasta 1.6 m3/día por metro de margen. Se construyó un modelo de predicción de la carga hidráulica del agua subterránea y se calcularon los flujos ríos–acuífero; sin embargo, los flujos predichos a partir de este método mostraron una pobre correlación para los flujos calculados usando las cargas hidráulicas reales del agua subterránea. Los vertidos de larga duración y alto volumen de los diques tiene el potencial para sesgar las estimaciones de los recursos de acuíferos a largo plazo y alterar perjudicialmente las propiedades químicas y físicas de los acuíferos freáticos que flanquean el río. Los hallazgos tienen ramificaciones para un manejo integrado mejorado de los sistemas de diques y de los acuíferos situados corriente abajo.

长期大容量水坝放水对河流-含水层相互作用的影响能到什么程度?澳大利亚新南威尔士州的一个研究实例

摘要

长期大流量水坝放水是在没有自然发生同等情况下独一无二的人为事件。对澳大利亚新威尔士州下游第四纪冲积含水层上水坝放水的影响进行了评价。可以看出,长期(>26天)、大流量水坝放水(平均>8,000百万升/天)使河流-含水层相互作用发生重大变化。这些变化包括河流到含水层的 通量达到6.3米3/天每米河岸(在离河岸330米的地方)、范围和补给量/河岸储量增加及河流-含水层通量长期(>100天)反转。相比之下,在低流量事件(平均<2000百万/天)期间,通量成为从含水层到河流,达到1.6米3/天每米河岸。建立了地下水水头模型并计算了河流-含水层通量;然而,这种方法预测的通量显示与采用实际地下水水头计算的通量对比性差。长期大流量水坝放水具有偏移长期含水层资源估算结果的潜在可能,改变与河流侧面相接的潜水含水层的化学和物理特性。这些发现对改进水坝系统和下游含水层的综合管理具有深远影响。

Até que ponto as descargas de longa duração e grande volume de barragens influenciam as interações rio–aquífero? Um estudo de caso na Nova Gales do Sul, Austrália

Resumo

As descargas de longa duração e grande volume de barragens são eventos antropogénicos únicos, sem equivalentes de ocorrência natural. É avaliado o impacte deste tipo de descargas de barragens num aquífero aluvionar Quaternário a jusante, na Nova Gales do Sul, Austrália. Observa-se que as descargas de longa duração (>26 dias) e elevado volume (média diária >8,000 ML/dia) resultam em variações significativas nas interações rio-aquífero. Estas variações incluem um fluxo do rio para o aquífero de até 6.3 m3/dia por metro de margem do rio (a distâncias de até 330 m da margem), o aumento da área e do volume de recarga/armazenamento, e uma inversão de longa duração (>100 dias) dos fluxos rio–aquífero. Em contrapartida, durante os eventos de menor volume (média diária <2,000 ML/dia), o fluxo direcionava-se do aquífero para o rio a taxas de até 1.6 m3/dia por metro de margem. Foi construído um modelo de previsão dos níveis piezométricos e foram calculados os fluxos rio–aquífero; no entanto, os fluxos estimados com base neste método apresentaram baixa correlação com os fluxos calculados usando os níveis piezométricos reais observados. As descargas de longa duração e grande volume de barragens poderão distorcer as previsões dos recursos hídricos subterrâneos disponíveis a longo prazo, bem como alterar de forma negativa as propriedades físico-químicas dos aquíferos freáticos subjacentes ao rio. Os resultados têm implicações para a melhoria da gestão integrada dos sistemas de barragens e dos aquíferos a jusante.

Notes

Acknowledgements

HA, AB, MM, MS and IA were supported by the National Centre for Groundwater Research and Training (NCGRT), an Australian Government initiative, funded by the Australian Research Council and the National Water Commission. PG was supported by the NCGRT and New South Wales Science Leveraging Fund (NSW SLF). Infrastructure was funded by the NSW SLF and the Groundwater Education Investment Fund. Water level and climate data used in the research are available at http://groundwater.anu.edu.au

References

  1. Baillie MN, Hogan JF, Ekwurzel B, Wahi AK, Eastoe CJ (2007) Quantifying water sources to a semiarid riparian ecosystem, San Pedro River, Arizona. J Geophys Res 112:G03S02. doi: 10.1029/2006jg000263
  2. Baskaran S, Ransley T, Brodie RS, Baker P (2009) Investigating groundwater–river interactions using environmental tracers. Aust J Earth Sci 56:13–19. doi: 10.1080/08120090802541887 CrossRefGoogle Scholar
  3. BOM (2012) Climate zone definitions. http://www.bom.gov.au/jsp/ncc/climate_averages/climate-classifications/index.jsp. Accessed 10 September 2012
  4. Butcher JC (2008) Numerical methods for ordinary differential equations. Wiley, New YorkGoogle Scholar
  5. Cartwright I, Hofmann H, Sirianos MA, Weaver TR, Simmons CT (2011) Geochemical and 222Rn constraints on baseflow to the Murray River, Australia, and timescales for the decay of low-salinity groundwater lenses. J Hydrol 405:333–343CrossRefGoogle Scholar
  6. Chen X (2007) Hydrologic connections of a stream–aquifer-vegetation zone in south-central Platte River valley, Nebraska. J Hydrol 333:554–568. doi: 10.1016/j.jhydrol.2006.09.020 CrossRefGoogle Scholar
  7. Chen X, Chen XH (2003) Stream water infiltration, bank storage, and storage zone changes due to stream-stage fluctuations. J Hydrol 280:246–264. doi: 10.1016/s0022-1694(03)00232-4 CrossRefGoogle Scholar
  8. Cooper HH, Rorabaugh MI (1963) Ground-water movements and bank storage due to flood stages in surface streams. US Geol Surv Water Suppl Pap 1536-JGoogle Scholar
  9. Criss RE, Criss EM (2012) Prediction of well levels in the alluvial aquifer along the lower Missouri River. Ground Water 50:571–577. doi: 10.1111/j.1745-6584.2011.00877.x CrossRefGoogle Scholar
  10. Driscoll FG (1986) Groundwater and wells. Johnson Filtration, Seattle, WAGoogle Scholar
  11. Fetter CW (1999) Contaminant hydrogeology, 2nd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  12. Gleeson T, Wada Y, Bierkens MFP, van Beek LPH (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200CrossRefGoogle Scholar
  13. Hajkowicz S, Collins K (2007) A review of multiple criteria analysis for water resource planning and management. Water Resour Manag 21:1553–1566. doi: 10.1007/s11269-006-9112-5 CrossRefGoogle Scholar
  14. Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations. Bull no. 36, US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MI, pp 50Google Scholar
  15. Ketata M, Gueddari M, Bouhlila R (2014) Hydrodynamic and salinity evolution of groundwaters during artificial recharge within semi-arid coastal aquifers: a case study of El Khairat aquifer system in Enfidha (Tunisian Sahel). J Afr Earth Sci 97:224–229CrossRefGoogle Scholar
  16. Koundouri P (2004) Current issues in the economics of groundwater resource management. J Econ Surv 18(5):703–740Google Scholar
  17. Larned ST, Hicks DM, Schmidt J, Davey AJH, Dey K, Scarsbrook M, Arscott DB, Woods RA (2008) The Selwyn River of New Zealand: a benchmark system for alluvial plain rivers. River Res Appl 24:1–21. doi: 10.1002/rra.1054 CrossRefGoogle Scholar
  18. Loáiciga HA (2003) Climate change and ground water. Ann Assoc Am Geogr 93:30–41. doi: 10.1111/1467-8306.93103 CrossRefGoogle Scholar
  19. Marino MA (1973) Water-table fluctuation in semipervious stream-unconfined aquifer systems. J Hydrol 19:43–52. doi: 10.1016/0022-1694(73)90092-9 CrossRefGoogle Scholar
  20. McCallum AM, Andersen MS, Giambastiani BMS, Kelly BFJ, Acworth RI (2013) River–aquifer interaction in a semi-arid environment stressed by groundwater abstraction. Hydrol Process 27:1072–1085. doi: 10.1002/hyp.9229 CrossRefGoogle Scholar
  21. McCallum AM, Andersen MS, Rau GC, Larsen JR, Acworth RI (2014) River–aquifer interactions in a semiarid environment investigated using point and reach measurements. Water Resour Res 50. doi: 10.1002/2012WR012922
  22. Nilsson C, Berggren K (2000) Alterations of riparian ecosystems caused by river regulation. Bioscience 50:783CrossRefGoogle Scholar
  23. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072. doi: 10.1126/science.1128845 CrossRefGoogle Scholar
  24. Pinder GF, Bredehoeft JD, Cooper HH Jr (1969) Determination of aquifer diffusivity from aquifer response to fluctuations in river stage. Water Resour Res 5:850–855. doi: 10.1029/WR005i004p00850 CrossRefGoogle Scholar
  25. Ramírez-Hernández J, Hinojosa-Huerta O, Peregrina-Llanes M, Calvo-Fonseca A, Carrera-Villa E (2013) Groundwater responses to controlled water releases in the limitrophe region of the Colorado River: implications for management and restoration. Ecol Eng 59:93–103Google Scholar
  26. Ren S, Kingsford RT, Thomas RF (2010) Modelling flow to and inundation of the Macquarie marshes in arid Australia. Environmetrics 21:549–561. doi: 10.1002/env.1002 CrossRefGoogle Scholar
  27. Sawyer AH MBC, Ashleigh B, Meredith M (2009) Impact of dam operations on hyporheic exchange in the riparian zone of a regulated river. Hydrol Process 23:2129–2137. doi: 10.1002/hyp.7324 CrossRefGoogle Scholar
  28. Schmoldt L, Peterson L (2000) Analytical group decision making in natural resources: methodology and application. For Sci 46:62–75Google Scholar
  29. Scott MM, Raymond O, Henderson GAM, Morgan E, Warren AYE, Wyborn D (1999) Wellington 1:100000 geological sheet 8632. In: Geological survey of New South Wales, final 1st edn. Department of Mineral Resources, New South Wales, Sydney, Australia, p 1:100000, geological mapGoogle Scholar
  30. Senior CA, Jones RG, Lowe JA, Durman CF, Hudson D (2002) Predictions of extreme precipitation and sea-level rise under climate change. Phil Trans Math Phys Eng Sci 360:1301–1311CrossRefGoogle Scholar
  31. Simpson SC, Meixner T (2012) Modeling effects of floods on streambed hydraulic conductivity and groundwater–surface water interactions. Water Resour Res 48, W02515. doi: 10.1029/2011wr011022 CrossRefGoogle Scholar
  32. Singh SK (2003) Explicit estimation of aquifer diffusivity from linear stream stage. J Hydraul Eng 129:463CrossRefGoogle Scholar
  33. Singh S (2004) Aquifer Response to sinusoidal or arbitrary stage of semipervious stream. J Hydraul Eng 130:1108–1118. doi: 10.1061/(ASCE)0733-9429(2004)130:11(1108) CrossRefGoogle Scholar
  34. Srivastava R (2006) Aquifer diffusivity estimation from response to stream stage variation. J Hydrol Eng 11:273–277. doi: 10.1061/(asce)1084-0699(2006)11:3(273) CrossRefGoogle Scholar
  35. State Water Corporation (2012) Burrendong Dam. http://www.statewater.com.au/Water+delivery/Dams/Burrendong+Dam. Accessed 10 September 2012
  36. Victoria FB, Filho JSV, Pereira LS, Teixeira JL, Lanna AE (2005) Multi-scale modeling for water resources planning and management in rural basins. Agric Water Manag 77:4–20CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. W. Graham
    • 1
    • 2
    Email author
  • M. S. Andersen
    • 1
  • M. F. McCabe
    • 3
  • H. Ajami
    • 4
  • A. Baker
    • 1
  • I. Acworth
    • 1
  1. 1.Connected Waters Initiative Research CentreUNSW AustraliaSydneyAustralia
  2. 2.SGA EnvironmentalSt LeonardsAustralia
  3. 3.Water Desalination and Reuse CentreKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  4. 4.Water Research CentreUNSW AustraliaSydneyAustralia

Personalised recommendations