Advertisement

Hydrogeology Journal

, Volume 23, Issue 2, pp 377–396 | Cite as

Groundwater geochemistry of the Outaouais Region (Québec, Canada): a regional-scale study

  • N. MontcoudiolEmail author
  • J. Molson
  • J.-M. Lemieux
Report

Abstract

As part of a province-wide groundwater characterization program, a detailed groundwater geochemistry survey was undertaken in the Outaouais Region (Québec, Canada) in order to identify the primary processes responsible for groundwater quality and to develop a conceptual model for groundwater flow and geochemical evolution. During the summers of 2011 and 2012, 139 samples were collected from municipal and private wells which were analysed for major ions, nutrients, trace elements and sulphides. About 70 % of the samples were obtained from bedrock wells, mainly in the silicate rocks of the Canadian Shield and the remainder from wells screened in Quaternary deposit aquifers. Hydrogeochemical facies distributions were determined from 127 of these samples which had anion-cation charge balance errors within ±10 %. The classification by facies was also supported by a multivariate statistical analysis, namely factor analysis combined with hierarchical cluster analysis. The study identified Champlain Sea invasion, cation exchange and freshwater recharge as the main geochemical processes affecting groundwater chemistry in this region. Secondary processes, related to the bedrock geology, are responsible for exceedances of Canadian drinking-water standards, namely for fluoride, uranium, iron and manganese.

Keywords

Regional hydrogeochemistry Groundwater quality Crystalline rocks Canada Conceptual model 

Géochimie des eaux souterraines en Outaouais (Québec, Canada): une étude à échelle régionale

Résumé

Dans le cadre d’un programme de caractérisation des eaux souterraines à l’échelle provinciale, une étude hydrogéochimique a été menée dans l’Outaouais (Québec, Canada) dans le but d’identifier les principaux processus responsables de la qualité des eaux souterraines et de développer un modèle conceptuel d’évolution géochimique. Pendant les étés 2011 et 2012, 139 échantillons ont été prélevés dans des puits municipaux et privés et ont été analysés pour les ions majeurs, les nutriments, les éléments traces et les sulfures. Environ 70 % des échantillons proviennent de puits au roc, principalement dans le Bouclier Canadien, et le restant de puits localisés dans les dépôts du Quaternaire. La répartition des faciès hydrogéochimiques a été déterminée pour les 127 échantillons ayant une balance électronique entre ±10 %. La classification par les facies est étayée par une analyse statistique multivariée incluant une analyse factorielle et une analyse hiérarchique par groupement. L’invasion par la Mer de Champlain, l’échange cationique et la recharge par des eaux météoriques peu minéralisées sont les principaux processus géochimiques affectant la géochimie des eaux souterraines de la région. Les processus secondaires, liés à la nature géologique du roc, sont responsables des dépassements des normes d’eau potable canadiennes pour les fluorures, l’uranium, le fer et le manganèse.

Geoquímica del agua subterránea de la región Outaouais (Quebec, Canadá): un estudio a escala regional

Resumen

Como parte de un programa de caracterización del agua subterránea en un ámbito provincial, se llevó a cabo un detallado relevamiento geoquímico del agua subterránea en la región de Outaouais (Quebec, Canadá) con el objeto de identificar los procesos primarios responsables de la calidad de agua subterránea y para desarrollar un modelo conceptual de flujo subterráneo y de evolución geoquímica. Durante los veranos de 2011 year 2012, se recolectaron 139 muestras de pozos municipales y privados que fueron analizadas para caracterizar iones mayoritarios, nutrientes, elementos trazas y sulfuros. Alrededor del 70 % de las muestras se obtuvieron de pozos del basamento, principalmente en rocas silicatadas del Escudo Canadiense y el resto fueron cubiertas de pozos en depósitos acuíferos del Cuaternario. Las distribuciones de facies hidrogeoquímicas se determinaron para 127 de estas muestras que tuvieron errores del balance aniónico—catiónico dentro del ±10 %. La clasificación por facies fue también apoyada por análisis estadísticos multivariados, es decir análisis de factores combinados con análisis jerárquico de cluster. El estudio identificó la invasión del mar Champlain intercambio catiónico y recarga de agua dulce como los principales procesos geoquímicos que afectan la química del agua subterránea en esta región. Procesos secundarios, relacionados con la geología del basamento, son responsables de las excedencias de los estándares del agua potable de Canadá, es decir flúor, uranio, hierro y manganeso.

(加拿大魁北克省) 渥太华地区地下水中的地球化学:一项区域尺度的研究

摘要

作为全省地下水特性描述项目的一部分, 在 (加拿大魁北克省) 渥太华地区开展了详细的地下水地球化学调查工作,以确定决定地下水水质的原始过程及开发地下水流和地球化学演化概念模型. 2011 年和2012年夏季, 从市政和私有井中采集了139个样品,进行了主要离子、营养物、微量元素和硫化物分析。大约70%的样品主要从加拿大地盾硅酸盐岩石中的基岩井获取, 其余样品从滤水管在第四纪沉积物含水层的井中获取. 根据这些样品其中的127个样品确定了水文地球化学相分布情况,这127个样品阴离子-阳离子电荷平衡误差在 ± 10 %之内。依赖于水文地球化学相的分类也得到了多元统计分析的支持, 即聚类分析结合因子分析. 研究确定了山普伦海入侵、阳离子交换和淡水补给是影响本区域地球化学状况的主要地球化学过程。与基岩地质相关的次要过程是氟、铀、铁和锰超过加拿大饮用水标准的主要原因.

Geoquímica da água subterrânea da Região de Outaouais (Quebec, Canadá): um estudo à escala regional

Resumo

Como parte de um programa de caraterização das águas subterrâneas em toda a província, foi realizado um levantamento detalhado da geoquímica das águas subterrâneas na Região de Outaouais (Quebec, Canadá), a fim de identificar os principais processos responsáveis pela qualidade das águas subterrâneas e desenvolver um modelo concetual para o fluxo de águas subterrâneas e evolução geoquímica. Durante os verões de 2011 e 2012, foram recolhidas 139 amostras de poços municipais e particulares, tendo sido analisados os iões maiores, os nutrientes, elementos traço e sulfuretos. Cerca de 70 % das amostras foram obtidas a partir de poços em rocha, principalmente nas rochas silicatadas do Escudo Canadiano, e os restantes a partir de poços com ralos em aquíferos nos depósitos do Quaternário. Foram determinadas as distribuições das fácies hidrogeoquímicas a partir de 127 destas amostras, as quais apresentaram erros de balanço de carga iónica dentro de ±10 %. A classificação por fácies também foi apoiada por uma análise estatística multivariada, nomeadamente análise fatorial combinada com a análise grupal hierárquica. Como principais processos geoquímicos que afetam a química das águas subterrâneas na região o estudo identificou a intrusão do Mar de Champlain, a troca catiónica e a recarga de água doce. Os processos secundários, relacionados com a geologia do substrato rochoso, são responsáveis pela ultrapassagem dos padrões canadianos de qualidade da água potável, em particular para o fluoreto, o urânio, o ferro e o manganês.

Notes

Acknowledgements

The authors wish to thank Research Assistants G. Comeau, M.-C. Talbot-Poulin and Y. Tremblay, as well as numerous summer work-term students (field work), for their help with the Outaouais PACES project. P. Therrien of Université Laval provided invaluable computer technical support during the data analysis. This project was funded primarily by the Quebec Ministry of Sustainable Development, Environment, Wildlife and Parks (MDDEFP), with significant contributions from the following Regional Partners: l’Agence de Traitement de l’Information Numérique de l’Outaouais (L’ATINO), WESA Enviro-Eau, Regional County Municipalities (Collines de l’Outaouais, Vallée de la Gatineau, Pontiac and Papineau), the City of Gatineau, Regional Watershed Organisations (ABV des 7, COBALI and OBV-RPNS), the Regional Council for Environment and Sustainable Development in Outaouais (CREDDO) and the Regional Conference of Elected Officers of Outaouais (CRÉ-O). The authors also acknowledge research support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and from a Canada Research Chair in Quantitative Hydrogeology of Fractured Porous Media held by the second author. Finally, the authors acknowledge two anonymous reviewers for their valuable comments which significantly improved the manuscript.

Supplementary material

10040_2014_1190_MOESM1_ESM.pdf (195 kb)
ESM 1 (PDF 195 kb)

References

  1. Alcalá FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359(1–2):189–207CrossRefGoogle Scholar
  2. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Leiden, The NetherlandsCrossRefGoogle Scholar
  3. Back W (1960) Hydrochemical facies and ground-water flow patterns in Northern Atlantic Coastal Plain. AAPG Bull 44(7):1244–1245Google Scholar
  4. Barnett MO, Jardine PM, Brooks SC et al (2000) Adsorption and transport of uranium (VI) in subsurface media. Soil Sci Soc Am J 64(3):908–917CrossRefGoogle Scholar
  5. Beaudry C (2013) Hydrogéochimie régionale de l’eau souterraine en Montérégie Est, Québec, Canada [Groundwater regional hydrogeochemistry in Montérégie Est, Québec, Canada]. Master Thesis. INRS-Eau, Terre et Environnement, Quebec City, QBGoogle Scholar
  6. Bélanger R (2014) Urban geology of the National Capital Area. Available at http://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R%3D226165. Accessed 10 February 2014
  7. Betcher R, Gascoyne M, Brown D (1988) Uranium in groundwaters of southeastern Manitoba, Canada. Can J Earth Sci 25(12):2089–2103CrossRefGoogle Scholar
  8. Blanchette D, Lefebvre R, Nastev M et al (2010) Groundwater quality, geochemical processes and groundwater evolution in the Chateauguay River watershed, Quebec, Canada. Can Water Resour J 35(4):503–526CrossRefGoogle Scholar
  9. Brown CJ, Jurgens BC, Katz BG et al (2007) Arsenic and uranium in four aquifer settings: occurrence, distribution, and mechanisms for transport to supply wells. Proceedings of the 2007 National Groundwater Association Naturally Occurring Contaminants Conference: Arsenic, Radium, Radon, and Uranium. Charleston, SC, February 2005Google Scholar
  10. Carrier M-A, Lefebvre R, Rivard C et al (2013) Portrait des ressources en eaux souterraines en Montérégie Est, Québec, Canada [Groundwater resource portrait in Montérégie Est, Québec, Canada]. Joint project between INRS, GSC-Québec, OBV Yamaska and IRDA within the Québec Groundwater Characterization program. Final report INRS R-1433, INRS, Quebec City, QBGoogle Scholar
  11. Chae G-T, Yun S-T, Mayer B et al (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385(1–3):272–283CrossRefGoogle Scholar
  12. Cloutier V (2004) Origin and geochemical evolution of groundwater in the Paleozoic Basses-Laurentides sedimentary rock aquifer system, Québec, Canada. PhD Thesis, INRS-Eau, Terre et Environnement, Quebec City, QBGoogle Scholar
  13. Cloutier V, Lefebvre R, Savard M et al (2006) Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. Hydrogeol J 14(4):573–590CrossRefGoogle Scholar
  14. Cloutier V, Lefebvre R, Therrien R et al (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353(3–4):294–313CrossRefGoogle Scholar
  15. Cloutier V, Lefebvre R, Savard MM et al (2010) Desalination of a sedimentary rock aquifer system invaded by Pleistocene Champlain Sea water and processes controlling groundwater geochemistry. Environ Earth Sci 59(5):977–994CrossRefGoogle Scholar
  16. Comeau G, Talbot Poulin M-C, Tremblay Y et al (2013) Projet d’acquistion de connaissances sur les eaux souterraines en Outaouais. [Groundwater characterisation program in Outaouais]. Final report, Dépt. de géologie et de génie géologique, Université Laval, Laval, QB, 148 ppGoogle Scholar
  17. Couture G (1997) Hydrogéochimie d’eaux souterraines dans la ceinture métasédimentaire centrale de la province géologique du Grenville, Québec [Groundwater hydrogeochemistry in the central metasedimentary belt of Grenville geologic province, Québec]. Master Thesis, INRS-Eau, Terre et Environnement, Québec, CanadaGoogle Scholar
  18. Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New YorkGoogle Scholar
  19. Environment Canada (2009) Canadian National Atmospheric Chemistry Precipitation Database. Available at www.ec.gc.ca/natchem/default.asp?lang=En&n=90EDB4BC-1. Accessed 26 September 2013
  20. Farnham IM, Singh AK, Stetzenbach KJ et al (2002) Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometr Intell Lab Syst 60(1–2):265–281CrossRefGoogle Scholar
  21. Frape SK, Fritz P, McNutt RH (1984) Water–rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim Cosmochim Acta 48(8):1617–1627CrossRefGoogle Scholar
  22. Fritz P, Frape SK (1982) Saline groundwaters in the Canadian Shield: a first overview. Chem Geol 36(1–2):179–190CrossRefGoogle Scholar
  23. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090CrossRefGoogle Scholar
  24. Globensky Y (1987) Géologie des Basses-Terres du Saint-Laurent [Geology of the St. Lawrence Lowlands]. Report MM 85–02, Provincial Quebec Ministry of Natural Resources, Quebec City, QBGoogle Scholar
  25. Gouvernement du Québec (2013a) Politique de protection des sols et de réhabilitation des terrains contaminés - Annexe 2: Les critères génériques pour les sols et pour les eaux souterraines, updated 1st May of 2013 [Soil protection and contaminated sites rehabilitation policy - Appendix 2: Generic criteria for soils and groundwater]. Available at http://www.mddep.gouv.qc.ca/sol/terrains/politique/annexe_2_grille_eaux.htm. Accessed 12 February 2014
  26. Gouvernement du Québec (2013b) Règlement sur la Qualité de l’Eau Potable (RQEP) (L.R.Q., c. Q-2, r. 40), updated 1st May of 2013. [Regulation respecting to the quality of drinking water]. Available at http://www2.publicationsduquebec.gouv.qc.ca/dynamicSearch/telecharge.php?type=2&file=//Q_2/Q2R40.htm. Accessed 11 March 2014
  27. Güler C, Thyne G, McCray J et al (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10(4):455–474CrossRefGoogle Scholar
  28. Health Canada (2012) Guidelines for Canadian drinking water quality: summary table. Available at http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/2012-sum_guide-res_recom/index-eng.php. Accessed September 2014
  29. Hem JD (1972) Chemical factors that influence availability of iron and manganese in aqueous systems. Geol Soc Am Bull 83(2):443–450CrossRefGoogle Scholar
  30. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol Surv Pap 2254, 263 ppGoogle Scholar
  31. Hounslow AW (1995) Water quality data: analysis and interpretation. Lewis, Boca Raton, FLGoogle Scholar
  32. Jacks G, Bhattacharya P, Chaudhary V et al (2005) Controls on the genesis of some high-fluoride groundwaters in India. Appl Geochem 20(2):221–228CrossRefGoogle Scholar
  33. Krupka KM, Serne RJ (2002) Geochemical factors affecting the behavior of antimony, cobalt, europium, technetium, and uranium in vadose sediments. Pacific Northwest National Laboratory, Richland, WACrossRefGoogle Scholar
  34. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  35. Larocque M, Gagné S, Tremblay L et al (2013) Projet de connaissances des eaux souterraines du bassin versant de la rivière Bécancour et de la MRC de Bécancour: rapport synthèse [Groundwater resources project in the watershed of Bécancour River and RCM of Bécancour: final report]. Report, Quebec Ministry of Environment, Wildlife and Parks, Quebec City, QB, 62 ppGoogle Scholar
  36. Leblanc Y, Légaré G, Lacasse A et al. (2013) Caractérisation hydrogéologique du sud-ouest de la Mauricie [Hydrogeologic characterization of south-west Mauricie]. Report submitted to the provincial Quebec Ministry of Environment, Wildlife and Parks, Dépt. des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QB, 134 ppGoogle Scholar
  37. Moncur M (2010) Uranium anomalies in shallow groundwater near Bonnyville Alberta. Alberta Innovates - Technology Futures, Calgary, ABGoogle Scholar
  38. Ozsvath DL (2009) Fluoride and environmental health: a review. Rev Environ Sci Biotechnol 8(1):59–79CrossRefGoogle Scholar
  39. Panno SV, Hackley KC, Hwang HH et al (2006) Characterization and identification of Na–Cl sources in ground water. Ground Water 44(2):176–187CrossRefGoogle Scholar
  40. Parent M, Occhietti S (1988) Late Wisconsinan deglaciation and Champlain Sea invasion in the St. Lawrence Valley, Québec. Géogr Phys Quat 42(3):215–246Google Scholar
  41. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99–4259, 326 ppGoogle Scholar
  42. Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River basins, southern India. Environ Geol 46(1):47–61Google Scholar
  43. Rao NS (2009) Fluoride in groundwater, Varaha River basin, Visakhapatnam District, Andhra Pradesh, India. Environ Monit Assess 152(1–4):47–60CrossRefGoogle Scholar
  44. SAS Institute Inc. (2009) SAS/STAT 9.2 user’s guide, 2nd edn. SAS, Cary, NCGoogle Scholar
  45. Sracek O, Hirata R (2002) Geochemical and stable isotopic evolution of the Guarani aquifer system in the State of São Paulo, Brazil. Hydrogeol J 10(6):643–655CrossRefGoogle Scholar
  46. Sterckx A (2013) Étude des facteurs influençant le rendement des puits d’alimentation de particuliers qui exploitent le roc fracturé en Outaouais, Québec, Canada [Study of the factors impacting on the productivity of individual wells in fractured bedrock from the Outaouais Region, Québec, Canada]. MSc Thesis, Université Laval, Quebec City, QBGoogle Scholar
  47. Talbot Poulin M-C, Comeau G, Tremblay Y et al. (2013) Projet d’acquisition de connaissances sur les eaux souterraines du territoire de la Communauté Métropolitaine de Québec [Groundwater characterisation program in Québec City]. Final report, Dépt. de géologie et de génie géologique, Université Laval, Laval, QB, 172 ppGoogle Scholar
  48. Vengosh A, Pankratov I (1998) Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water. Ground Water 36(5):815–824CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Geology & Geological EngineeringUniversité LavalQuébec CityCanada

Personalised recommendations