Hydrogeology Journal

, Volume 23, Issue 1, pp 143–159 | Cite as

Understanding connected surface-water/groundwater systems using Fourier analysis of daily and sub-daily head fluctuations

  • R. I. Acworth
  • Gabriel C. Rau
  • Andrew M. McCallum
  • Martin S. Andersen
  • Mark O. Cuthbert


The long-term monitoring records of hydraulic heads frequently contain fluctuations originating from different cyclic drivers. Fourier analysis applied to these records can reveal connected surface-water/groundwater system characteristics. The various components of the atmospheric tides, the earth tides and the presence of diurnal responses to evapotranspiration are identified and isolated through band-pass filtering of data recorded from both vented and absolute gauge transducers. The signature of the different cyclic drivers is contained in amplitude and phase of the various signal components and can be used to determine the degree of system confinement. A methodology is described for the calculation of barometric efficiency in confined aquifers based upon the amplitude of the M2 and S2 components of the earth and atmospheric tides. It is demonstrated that Fourier analysis of water-level fluctuations is a simple but underused tool that can help to characterise shallow groundwater systems.


Australia Analytical solutions Confining units Groundwater/surface-water relations Groundwater hydraulics 

Comprendre les systèmes connectés eaux de surface/eaux souterraines en utilisant l’analyse de Fourier sur les variations de charge journalières et infra journalières


Les enregistrements de suivi à long terme des charges hydrauliques renferment fréquemment des fluctuations ayant pour origine différents facteurs cycliques. L’analyse de Fourier appliquée à ces enregistrements peut révéler les caractéristiques de systèmes connectés eaux de surface/eaux souterraines. Les différentes composantes des marées atmosphériques, des marées terrestres et la présence de réponses diurnes à l’évapotranspiration sont identifiées et isolées par filtration des bandes passantes des données, enregistrées tant au moyen de capteurs absolus que compensés en pression atmosphérique. La signature des différents facteurs cycliques est contenue dans l’amplitude et la phase des différentes composantes du signal et peut être utilisée pour déterminer le degré de captivité du système. Une méthodologie est décrite pour le calcul de l’efficacité barométrique des aquifères captifs, basée sur l’amplitude des composantes M2 and S2 des marées terrestres et atmosphériques. Il est démontré que l’analyse de Fourier des fluctuations de niveaux d’eau est un outil simple mais sous-utilisé qui peut aider à caractériser les systèmes aquifères peu profonds.

El entendimiento de las conexiones de los sistemas agua superficial y agua subterránea usando el análisis de Fourier de fluctuaciones diaria y subdiaria de la carga hidráulica


Los registros de monitoreo a largo plazo de las cargas hidráulicas frecuentemente contienen fluctuaciones procedentes de diferentes forzantes cíclicos. El análisis de Fourier aplicado a estos registros puede revelar las características de la conexión de los sistemas agua superficial / aguas subterráneas. Se identificaron y aislaron los distintos componentes de las mareas atmosféricas, las mareas terrestres y la presencia de respuestas diurnas a la evapotranspiración a través de filtros pasa banda de datos provenientes de sensores de presión ventilados y absolutos. Las peculiaridades de los diferentes forzantes cíclicos están contenidas en amplitud y fase de las distintas señales componentes y pueden ser usados para determinar el grado de confinamiento del sistema. Se describe una metodología para el cálculo de la eficiencia barométrica en acuíferos confinados basado en la amplitud de las componentes M2 y S2 de las mareas terrestre y atmosférica. Se demuestra que el análisis de Fourier de las fluctuaciones de los niveles de agua es una herramienta simple pero poco utilizada que puede ayudar a caracterizar sistemas de agua subterránea someros.



期水头监测记录经常包括不同循环驱动产生的波动。对这些记录进行傅里叶分析可揭示相互连接的地表水/地下水系统的特征。通过对排放的和绝对的计量传感器记录的资料进行带通滤波,确定了大气潮汐、地球潮汐各种各样的成分及存在着对蒸发蒸腾一日间的响应,并对每个因素进行了单独的分析。不同循环驱动的特征码包含在各种各样信号成分的幅相中,可用来确定系统限制的程度。根据地球潮汐和大气潮汐M2 和 S2成分的振幅,描述了计算承压含水层中气压效率的方法。研究表明,水位波动的傅里叶分析法是一个简单而又未充分利用的工具,可有助于描述浅层地下水系统的特征。

Entendimento das interações dos sistemas água superficial-água subterrânea através da aplicação de análise de Fourier em flutuações diárias e sub-diárias de séries piezometricas


Os registros de monitorização de níveis piezométricos a longo prazo contêm frequentemente oscilações causadas por fatores cíclicos. Uma análise de Fourier aplicada a esses registros pode revelar caraterísticas do sistema de interações água superficial/água subterrânea. As várias componentes das marés atmosféricas e terrestres e a presença de respostas diurnas à evapotranspiração são identificadas e isoladas por métodos de filtragem passa-banda de dados registados a partir de transdutores de pressão absoluta ou ventilados. A assinatura dos diferentes fatores cíclicos está incluída na amplitude e fase dos vários componentes de sinal e pode ser usada para determinar o grau de confinamento do sistema. É descrita uma metodologia para o cálculo da eficiência barométrica em aquíferos confinados, com base na amplitude das componentes M2 e S2 das marés atmosféricas e terrestres. Demonstra-se que a análise de Fourier das flutuações de nível de água é uma ferramenta simples, mas subutilizada, que pode ajudar a caraterizar sistemas hidrogeológicos subsuperficiais.



Aspects of this paper were first presented in September 2012 at the IAH 49th Congress in Niagara Falls, Canada. The site at Elfin Crossing on Maules Creek has been established using funds provided by the Cotton Catchment Communities CRC as a part of their Catchment Research program. Funding for GCR was provided by the National Centre for Groundwater Research and Training, an Australian Government initiative, supported by the Australian Research Council and the National Water Commission. The NSW Office of Water maintains the Elfin Crossing Stream gauge. Borehole and logger installations were only possible by funding from The Australian Government Groundwater Educational Investment Fund (GEIF). MOC was supported by the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement No. 299091. The authors are grateful to Edwin Weeks and two other anonymous reviewers for their helpful comments.


  1. Acworth RI, Brain T (2008) Calculation of barometric efficiency in shallow piezometers using water levels, atmospheric and earth tide data. Hydrogeol J 16:1469–1481. doi: 10.1007/s10040-008-0333-y CrossRefGoogle Scholar
  2. Ananthakrishnan R, Maliekal JA, Aralikatti SS (1984) Atmospheric tidal oscillations, part 1: historical development. Curr Sci 53(18):945–951Google Scholar
  3. Andersen MS, Acworth RI (2009) Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeol J 17:2005–2021CrossRefGoogle Scholar
  4. Berryman JG (2010) Inverse problem in anisotropic poroelasticity: drained constants from undrained ultrasound measurements. Lawrence Berkeley National Laboratory, Berkeley, CA. Accessed August 2014
  5. Bredehoeft JD (1967) Response of well-aquifer systems to earth tides. J Geophys Res 72:3.075–3.087CrossRefGoogle Scholar
  6. Butler JJ, Kluitenberg GJ, Whittemore DO, Loheide SP, Jin W, Billinger MA, Zhan X (2007) A field investigation of phreatophyte-induced fluctuations in the water table. Wat Resour Res 43:W02404. doi: 10.1029/2005WR004627 CrossRefGoogle Scholar
  7. Chapman S, Lindzen RS (1970) Atmospheric tides: thermal and gravitational. Reidel, Dordrecht, The NetherlandsGoogle Scholar
  8. Davis JC (1973) Statistics and data analysis in geology, Wiley, New YorkGoogle Scholar
  9. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New YorkGoogle Scholar
  10. Doodson AT (1921) The harmonic development of the tide-generating potential. Proc Roy Soc London A100:305–329CrossRefGoogle Scholar
  11. Emery WJ, Thomson RE (2004) Data analysis methods in physical oceanography, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  12. Fourier JBJ (1822) Théorie analytique de la chaleur [Analytical theory of heat]. Didot, ParisGoogle Scholar
  13. Gribovszki Z, Szilágyi J, Kalicz P (2010) Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation: a review. J Hydrol 385:371–383CrossRefGoogle Scholar
  14. Harrington G, Cook P (2011) Mechanical loading and unloading of confined aquifers: implications for the assessment of long-term trends in potentiometric levels. Waterlines Report Series no. 51. National Water Commission, Australian Government, SydneyGoogle Scholar
  15. Hseih PA, Bredehoeft JD, Farr JM (1987) Determination of aquifer transmissivity from earth tide analysis. Water Resour Res 23(10):1824–1832CrossRefGoogle Scholar
  16. Ingebritsen S, Sanford W, Neuzil C (2006) Groundwater in geologic processes, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  17. Jacob CE (1940) On the flow of water in an elastic artesian aquifer. Am Geophys Union Trans 21(2):574–586Google Scholar
  18. Johnson B, Malama B, Barrash W, Flores AN (2013) Recognizing and modeling variable drawdown due to evapotranspiration in a semiarid riparian zone considering local differences in vegetation and distance from a river source. Wat Resour Res 49:030–1039. doi: 10.1002/wrcr.20122 Google Scholar
  19. Loheide SP, Butler JJ, Gorelick SM (2005) Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: a saturated–unsaturated flow assessment. Water Resour Res 41:W07030. doi: 10.1029/2005WR003942 Google Scholar
  20. McCallum AM, Andersen MS, Giambastiani BMS, Kelly BFJ, Acworth RI (2013) River–aquifer interactions in a semi-arid environment stressed by groundwater abstraction. Hydrol Proc 27:1072–1085CrossRefGoogle Scholar
  21. Merritt LM (2004) Estimating hydraulic properties of the Floridan Aquifer System by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry counties, Florida. US Geol Surv Water Resour Invest Rep 03–4267Google Scholar
  22. New South Wales Department of Primary Industries (2014) Office of Water website. Accessed 15 January, 2014
  23. Norum DI, Nuthin JN (1968) The effects of entrapped air and barometric fluctuations on the drainage of porous mediums. Water Resour Res 4(2):417–424CrossRefGoogle Scholar
  24. Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  25. Palumbo A (1998) Atmospheric tides. J Atmos Sol-Terr Phys 60:279–287CrossRefGoogle Scholar
  26. Post VEA, von Asmuth JR (2013) Review: hydraulic head measurements-new technologies, classic pitfalls. Hydrogeol J 21:737–750CrossRefGoogle Scholar
  27. Price M (2009) Barometric water-level fluctuations and their measurement using vented and non-vented pressure transducers. Q J Eng Geol Hydrogeol 42:245–250. doi: 10.1144/1470-9236/08-084 CrossRefGoogle Scholar
  28. Rau GC, Andersen MS, McCallum AM, Acworth RI (2010) Analytical methods that use natural heat as a tracer to quantify surface water–groundwater exchange, evaluated using field temperature records. Hydrogeol J 18:1093–1110CrossRefGoogle Scholar
  29. Rojstaczer S (1988a) Determination of fluid flow properties from the response of water levels in wells to atmospheric loading. Water Resour Res 24(11):1927–1938CrossRefGoogle Scholar
  30. Rojstaczer S (1988b) Intermediate period response of water levels in wells to crustal strain: sensitivity and noise level. J Geophys Res 93(B11):619–634Google Scholar
  31. Rojstaczer S, Agnew DC (1989) The influence of formation properties on the response of water levels in wells to earth tides and atmospheric loading. J Geophys Res 14(B9):403–412Google Scholar
  32. Rojstaczer S, Riley FS (1990) Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions. Water Resour Res 26(8):1803–1817Google Scholar
  33. Smith JO (2007) Mathematics of the discrete Fourier transform (DFT) with audio applications, 2nd edn. Online book: August 2014
  34. Sorensen JPR, Butcher AS (2011) Water level monitoring pressure transducers: a need for industry-wide standards. Groundw Monit Remediat 31:56–62. doi: 10.1111/j.1745-6592.2011.01346.x CrossRefGoogle Scholar
  35. Thomson TW, Lord K (1882) On the thermodynamic acceleration of the Earth’s rotation. Proc R Soc Edinburgh Session 1881–82 11:396–404Google Scholar
  36. TSoft (2013) A software package for the analysis of time series and earth tides, Accessed 15 Jan 2014
  37. Van de Kamp G, Gale JE (1983) Theory of earth tides and barometric effects in porous formations with compressible grains. Water Resour Res 19:538–544CrossRefGoogle Scholar
  38. Van Camp M, Vauterin P (2005) Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput Geosci 31(5):631–640Google Scholar
  39. Wahr J (1995) “Earth tides”, global earth physics, a handbook of physical constants. AGU Ref Shelf 1:40–46Google Scholar
  40. Weeks EP (1979) Barometric fluctuations in wells tapping deep unconfined aquifers. Water Resour Res 15(5):1167–1176CrossRefGoogle Scholar
  41. White WN (1932) A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: results of investigations in Escalante Valley. US Geol Surv Water Suppl Pap 659-AGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. I. Acworth
    • 1
  • Gabriel C. Rau
    • 1
  • Andrew M. McCallum
    • 2
  • Martin S. Andersen
    • 1
  • Mark O. Cuthbert
    • 1
    • 3
  1. 1.Connected Waters Initiative Research Centre (CWI)School of Civil and Environmental Engineering, UNSW AustraliaManly ValeAustralia
  2. 2.Affiliated with Connected Waters Initiative Research CentreUNSW AustraliaManly ValeAustralia
  3. 3.School of Geography, Earth and Environmental SciencesUniversity of BirminghamEdgbastonUK

Personalised recommendations