Advertisement

Hydrogeology Journal

, Volume 22, Issue 8, pp 1953–1967 | Cite as

The effect of urban heat islands on geothermal potential: examples from Quaternary aquifers in Finland

  • Teppo ArolaEmail author
  • Kirsti Korkka-Niemi
Paper

Abstract

The use of renewable energy can be enhanced by utilising groundwater reservoirs for heating and cooling purposes. The urbanisation effect on the peak heating and peak cooling capacity of groundwater in a cold groundwater region was investigated. Groundwater temperatures were measured and energy potentials calculated from three partly urbanised aquifers situated between the latitudes of 60° 25′N and 60° 59′N in Finland. The average groundwater temperature below the zone of seasonal temperature fluctuations was 3–4 °C higher in the city centres than in the rural areas. The study demonstrated that due to warmer groundwater, approximately 50–60 % more peak heating power could be utilized from populated areas compared with rural areas. In contrast, approximately 40–50 % less peak cooling power could be utilised. Urbanisation significantly increases the possibility of utilising local heat energy from groundwater within a wider region of naturally cold groundwater. Despite the warming in urban areas, groundwater still remains attractive as a source of cooling energy. More research is needed in order to determine the long-term energy capacity of groundwater, i.e. the design power, in urbanised areas of cold regions.

Keywords

Groundwater management Urban groundwater Cold region Finland 

L’effet des îles de chaleur urbaine sur le potentiel géothermique: exemples d’aquifères quaternaires en Finlande

Résumé

L’utilisation d’énergie renouvelable peut être améliorée en utilisant les réservoirs d’eau souterraine pour des besoins en chauffage et en refroidissement. L’effet de l’urbanisation sur la capacité des eaux souterraines en matière de satisfaction des pics de chauffage et de refroidissement dans une région aux eaux souterraines froides, a été étudié. Les températures des eaux souterraines ont été mesurées et les potentiels énergétiques ont été calculées à partir de trois aquifères partiellement urbanisés situés aux latitudes comprises entre 60° 25′N et 60° 59′N en Finlande. La température moyenne des eaux souterraines en-dessous de la zone de fluctuations saisonnières des températures était de 3–4 °C plus élevée dans les centres urbains que dans les zones rurales. L’étude a démontré qu’à cause de la présence d’eaux souterraines plus chaudes, plus de 50-60 % de la puissance de chauffage de pointe pourrait être satisfaite dans des zones à forte densité démographique par rapport aux zones rurales. En revanche, environ moins de 40 à 50 % de puissance de refroidissement de pointe pourraient être satisfaits. L’urbanisation augmente considérablement la possibilité d’utiliser la chaleur locale de l’eau souterraine au sein d’une région plus importante caractérisée par des eaux souterraines naturellement froides. Malgré le réchauffement dans les zones urbaines, les eaux souterraines restent attractives en tant que source d’énergie de refroidissement. Plus de recherche est nécessaire afin de déterminer la capacité énergétique à long terme des eaux souterraines, à savoir le pouvoir énergétique dans les zones urbanisées de régions froides.

El efecto de islas de calor urbanas en el potencial geotérmico: ejemplos de acuíferos cuaternarios en Finlandia

Resumen

El uso de la energía renovable puede ser enriquecido utilizando de reservorios de agua subterránea para fines de calentamiento y enfriamiento. Se investiga el efecto de la urbanización en la aptitud del agua subterránea en el pico de calentamiento y de enfriamiento en una región de agua subterránea fría. Se midieron las temperaturas del agua subterránea y se calcularon las potenciales energías a partir de tres acuíferos parcialmente urbanizados situados entre las latitudes de 60° 25′N y 60° 59′N en Finlandia. La temperatura promedio del agua subterránea debajo de la zona de fluctuaciones estacionales fue 3–4 °C más alta en el centro de la ciudad que en las áreas rurales. El estudio demostró que debido al agua subterránea más cálida, se podría utilizar aproximadamente 50–60 % más el pico de energía en el calentamiento a partir de las áreas habitadas comparadas con las áreas rurales. En contraste, se podría utilizar aproximadamente 40–50 % menos de energía en el pico de enfriamiento. La urbanización incrementa significativamente la posibilidad de utilizar la energía de calentamiento local a partir del agua subterránea dentro de una región más amplia de agua subterránea naturalmente fría. A pesar del calentamiento en áreas urbanas el agua subterránea aún permanece atractiva como una fuente de energía de enfriamiento. Se necesita una mayor investigación para determinar a largo plazo la capacidad de energía del agua subterránea, es decir la energía para el diseño, en áreas urbanizadas de regiones frías.

城市热岛对地热潜力的影响:芬兰第四系含水层的实例

摘要

通过利用地下水储层加热及冷却可提高可再生能源的使用效率。调查了城市化对寒冷地下水区地下水的最大加热能力和最大冷却能力。对位于芬兰北纬60° 25′N 至 60° 59′N之间三个在一定程度上城市化的含水层的地下水温进行了测量并对能源潜力进行了计算。季节性温度波动带之下的平均地下水温城市中心比农村地区高3–4 °C. 研究显示,由于地下水温度较温暖,与农村地区相比,人口居住区的最 大加热能力大约高50–60 %。相比之下,最大冷却能力大约少40–50 %。城市化大大增加了在更广阔的天然寒冷地下水地区内利用局部热能的可能性。尽管城市地区温度升高,但地下水作为冷却能源的来源仍然具有吸引力。需要更多的研究以确定地下水的长期能源能力,即寒冷地区城区的设计能力。

O efeito de ilhas de calor urbanas no potencial geotérmico: exemplos de aquíferos quaternários na Finlândia

Resumo

É possível reforçar o uso de energia renovável através da utilização de reservatórios de água subterrânea para fins de aquecimento e arrefecimento. Investigou-se o efeito da urbanização sobre a capacidade de aquecimento máximo e refrigeração máxima da água subterrânea numa região de águas subterrâneas frias. Mediram-se temperaturas de águas subterrâneas e calcularam-se potenciais de energia de três aquíferos parcialmente urbanizados situados entre as latitudes de 60° 25′N e 60° 59′N, na Finlândia. A temperatura média das águas subterrâneas, por baixo da zona das oscilações sazonais, foi 3–4 °C mais elevada nos centros urbanos do que nas áreas rurais. O estudo demonstrou que, devido às águas subterrâneas mais quentes, era possível utilizar cerca de 50–60 % mais potência de aquecimento máximo proveniente de áreas povoadas em comparação com áreas rurais. Em contrapartida, a potência de arrefecimento máximo utilizável desceria aproximadamente 40–50 %. A urbanização aumenta significativamente a possibilidade de utilizar a energia de calor local da água subterrânea dentro de uma região mais vasta de águas subterrâneas naturais frias. Apesar do aquecimento nas áreas urbanas, as águas subterrâneas mantêm-se atrativas como uma fonte de energia de arrefecimento. Necessita-se de mais investigação para determinar a capacidade energética das águas subterrâneas a longo prazo, nomeadamente no que respeita à conceção do seu aproveitamento, em áreas urbanizadas de regiões frias.

Notes

Acknowledgements

The authors wish to thank the following organisations who kindly allowed us to use their groundwater monitoring wells and provided help with this research: the City of Turku; Turun vesilaitos; the City of Lohja; Lohjan vesi- ja viemärilaitos; the Centre for Economic Development, Transport and the Environment for Uusimaa; Lahti Aqua; St1 Energy Oy; Neste Oil Oyj; Oy Teboil Ab; TOK and SOK. We also thank Professor Veli-Pekka Salonen and Dr Martin Preene for their support and advice, Dr Roy Siddall for language revision and Dr Sakari Salonen for helping us with regression tree analysis. Special thanks go to colleagues at the Turku office of Golder Associates. This research was funded by Golder Associates Oy, Maa- ja vesitekniikan tuki ry and the K.H. Renlund Foundation.

References

  1. Alalammi P (1987) Atlas of Finland, folio 131: climate. National Board of Survey, Geographical Society of Finland, HelsinkiGoogle Scholar
  2. Allen A, Milenic D (2003) Low enthalpy geothermal energy resources from groundwater in fluvioglacial gravels of buried valleys. Appl Energ 74:9–19CrossRefGoogle Scholar
  3. Allen AR, McGovern C, O’Brien M, Leahy KL, Connor BP (1999) Hydrogeology and land use management. IAH, Bratislava, Slovakia, pp 655–664Google Scholar
  4. Allen A, Milenic D, Sikora P (2003) Shallow gravel aquifers and the urban ‘heat island’ effect: a source of low enthalpy geothermal energy. Geothermics 32:569–578. doi: 10.1016/S0375-6505(03)00063-4 CrossRefGoogle Scholar
  5. Andea P, Mnerie D, Cristian D, Pop O, Jigoria-Oprea D (2010) Conventional vs. alternative energy sources overview: part I, energy and environment. In: Computational Cybernetics and Technical Informatics (ICCC-CONTI), 2010 International Joint Conference. Timisoara, Romania, May 2010, pp 595–600Google Scholar
  6. Andersson O (1994) Aquifer thermal energy storages in Sweden: experiences so far and market potential. In: Kangas MT, Lund PT (eds) Thermal energy storage: better economy, environment, technology: proceedings, vol 2. Calorstock ’94, 6th International Conference on Thermal Energy Storage, Espoo, Finland, August 1994, pp 22–25Google Scholar
  7. Arola T, Rantala J, Palin A, Lehtonen M (2011) Lohjan pohjavesialueiden suojelusuunnitelma [Groundwater protection plan for Lohja]. Project report, Golder Associates Oy, Turku, FinlandGoogle Scholar
  8. Bakema G, van der Hengel P M (1994) Cooling the largest events hall in the Benelux with an ATES system. In: Kangas MT, Lund PT (eds) Thermal energy storage: better economy, environment, technology: proceedings, vol 2. Calorstock ’94, 6th International Conference on Thermal Energy Storage, 22–25 August 1994, Espoo, FinlandGoogle Scholar
  9. Banks D (2012) An introduction to thermogeology: ground source heating and cooling. Wiley-Blackwell, Oxford, UKGoogle Scholar
  10. Banks D, Parnachev VP, Frengstad B, Holden W, Karnachuk OV, Vedernikov AA (2004) The evolution of alkaline, saline ground- and surface waters in the southern Siberian steppes. Appl Geochem 19:1905–1926. doi: 10.1016/j.apgeochem.2004.05.009 CrossRefGoogle Scholar
  11. Banks D, Gandy CJ, Younger PL, Withers J, Underwood C (2009) Anthropogenic thermogeological ‘anomaly’ in Gateshead, Tyne and Wear, UK. Q J Eng Geol Hydrogeol 42:307–312. doi: 10.1144/1470-9236/08-024
  12. Bayer P, Saner D, Bolay S, Rybach L, Blum P (2011) Greenhouse gas emission savings of ground source heat pump systems in Europe: a review. Renew Sust Energ Rev 16:1256–1267. doi: 10.1016/j.rser.2011.09.027 CrossRefGoogle Scholar
  13. Bonte M, Stuyfzand P, Hulsmann A, van Beelen P (2011) Underground thermal energy storage: environmental risks and policy developments in the Netherlands and European Union. Ecol Soc 16(1):22Google Scholar
  14. Bornstein RD (1968) Observations of the urban heat island effect in New York City. J Appl Meteorol Climatol 7:575–582CrossRefGoogle Scholar
  15. Budel J (1982) Climatic geomorphology. Princeton University, Princeton, NJGoogle Scholar
  16. Cotton WR, Pielke RA (1995) Human impacts on weather and climate. Cambridge University Press, CambridgeGoogle Scholar
  17. Cruickshanks F, Adsett E (1994) Sussex health centre aquifer thermal energy storage. In: Kangas MT, Lund PT (eds) Thermal energy storage: better economy, environment, technology—proceedings, vol 1. Calorstock ’94, 6th International Conference on Thermal Energy Storage, 22–25 August 1994, Espoo, FinlandGoogle Scholar
  18. EHPA (2009) European heat pump statistic: outlook 2009. European Heat Pump Association, Brussels, 65 ppGoogle Scholar
  19. Ferguson G, Woodbury AD (2004) Subsurface heat flow in an urban environment. J Geophys Res 109, B02402. doi: 10.1029/2003JB002715,2004 Google Scholar
  20. Ferguson G, Woodbury AD (2006) Observed thermal pollution and post-development simulations of low-temperature geothermal system in Winnipeg, Canada. Hydrogeol J 14:1206–1215. doi: 10.1007/s10040-006-0047-y CrossRefGoogle Scholar
  21. Ferguson G, Woodbury AD (2007) Urban heat island in the subsurface. Geophys Res Lett 34, L23713. doi: 10.1029/2007GL032324,2007 Google Scholar
  22. Haehlein S, Bayer P, Blum P (2010) International legal status of the use of shallow geothermal energy. Renew Sust Energ Rev 14:2611–2625. doi: 10.1016/j.rser.2010.07.069 CrossRefGoogle Scholar
  23. Iihola T, Ala-Peijari T, Seppänen H (1988) Aquifer thermal energy storage in Finland. Water Sci Technol 20(3):75–86Google Scholar
  24. Finnish Environment Institute (2006) The Corine 2006 database. http://wwwd3.ymparisto.fi/d3/Static_rs/spesific/corinelandcover.html. Accessed 29 Dec 2012
  25. Finnish Environment Institute (2012) The Hertta database. http://wwwp2.ymparisto.fi/scripts/hearts/welcome.asp. Accessed 10 Jul 2012
  26. Jylhä K, Kalamees T, Tietäväinen H, Ruosteenoja K, Jokisalo J, Hyvönen R, Ilomets S, Saku S, Hutila A (2011) Rakennusten energialaskennan testivuosi 2012 ja arviot ilmastonmuutoksen vaikutuksista [Test reference year 2012 for building energy demand and impacts of climate change]. Report no. 2011, Finnish Meteorological Institute, Helsinki, 6 ppGoogle Scholar
  27. Kalamees T, Jylhä K, Tietäväinen H, Jokisalo J, Ilomets S, Hyvönen R, Saku S (2011) Development of weighting factors for climate variables for selecting the energy reference year according to the EN ISO 15927-4 standard. Energ Build 47:53–60. doi: 10.1016/j.enbuild.2011.11.031
  28. Karhunen R (2004) Iniön ja Turun kartta-alueiden kallioperä. Suomen geologinen kartta 1:100 000. Kallioperäkarttojen selitykset, lehdet 1041 ja 1043 [Pre-Quaternary rocks of the Iniö and Turku map-sheet areas: explanation to the maps of Pre-Quaternary rocks, Sheets 1041 and 1043]. Geological Survey of Finland, Espoo, FinlandGoogle Scholar
  29. Karl TR, Diaz HF, Kukla G (1988) Urbanization: its detection and effect in the United States climate record. J Clim 1:1099–1123CrossRefGoogle Scholar
  30. Kasenov M (2001) Applied ground-water and hydrology and well hydraulics, 2nd edn. Water Resource Publications, Littleton, COGoogle Scholar
  31. Kerl M, Runge N, Tauchmann H, Goldscheider N (2012) Hydrogeologisches Konzeptmodell von München: Grundlage für die thermische Grundwassernutzung [Conceptual hydrogeological model of the city of Munich, Germany, as a basis for geothermal groundwater utilisation]. Grundwasser 17(3):127–135. doi: 10.1007/s00767-012-0199-8 CrossRefGoogle Scholar
  32. Lahermo P, Ilmasti M, Juntunen R, Taka M (1990) The hydrogeochemical mapping of Finnish aquifers. In: Geochemical atlas of Finland, part 1. Geological Survey of Finland. Espoo, Finland, 66 ppGoogle Scholar
  33. Landsberg HE (1981) The urban climate. Int. Geophys. Ser., vol 28. Academic, New YorkGoogle Scholar
  34. Lehijärvi M (1964) Kallioperäkartan selitys. Lahti. Suomen geologinen kartta 1:100 000. Lehti 3111 [Geological map of Finland, sheet 3111 Lahti: explanation to the map of rocks]. Geological Survey of Finland, Espoo, FinlandGoogle Scholar
  35. Leppäharju N (2008) Kallioenergian hyödyntämiseen vaikuttavat geofysikaaliset ja geologiset tekijät [Geophysical and geological factors of bedrock energy utilisation]. MSc Thesis, University of Oulu, Finland, 91 ppGoogle Scholar
  36. Lunkka JP, Johansson P, Saarnisto M, Sallasmaa O (2004) Glaciation in Finland. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations: extent and chronology. Elsevier, Amsterdam, pp 93–100Google Scholar
  37. Mälkki E, Soveri J (1986) Pohjavesi [Groundwater]. In: Mustonen S (ed) Sovellettu hydrologia [Applied hydrology]. Vesiyhdistys ry. Mäntän kirjapaino, Mänttä, FinlandGoogle Scholar
  38. Mäyränpää R (2012) Hollola-Lahti-Nastola. Seudullinen pohjaveden suojelusuunnitelma vuosille 2012–2021 [Groundwater protection plan for Hollola-Lahti-Nastola area for 2012–2021]. Project report. Lahden seuden ympäristöpalvelut, Lahti, FinlandGoogle Scholar
  39. McKenzie JM, Voss CI, Siegel DI (2007) Groundwater flow with energy transport and water ice-phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv Water Resour 30:966–983. doi: 10.1016/j.advwatres.2006.08.008 CrossRefGoogle Scholar
  40. Menberg K, Bayer P, Zosseder K, Rumohr S, Blum P (2013a) Subsurface urban heat islands in German cities. Sci Total Environ Vol 442:123–133. doi: 10.1016/j.scitotenv.2012.10.043 CrossRefGoogle Scholar
  41. Menberg K, Blum P, Shaffitel A, Bayer P (2013b) Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island. Environ Sci Technol 47:9747–9755. doi: 10.1021/es401546u CrossRefGoogle Scholar
  42. Ministry of Employment and the Economy (2010) Finland’s national action plan for promoting energy from renewable sources pursuant to Directive 2009/28/EC. Ministry of Employment and the Economy, Energy Dept., Helsinki, FinlandGoogle Scholar
  43. Moberg K AD (1888) Kertomus karttalehteen no. 8. Lahti [Explanation to map sheet 8. Lahti]. Weilin ja Göös osakeyhtiön kirjapaino, Helsinki, FinlandGoogle Scholar
  44. Moberg K AD (1889) Kertomus karttalehteen no. 2. Lohja [Explanation to map sheet 2. Lohja] Weilin ja Göös osakeyhtiön kirjapaino, Helsinki, FinlandGoogle Scholar
  45. Moberg K AD (1890) Kertomus karttalehteen no. 10. Turku [Explanation to map sheet 10. Turku]. Suomalaisen kirjallisuuden seuran kirjapaino, FinlandGoogle Scholar
  46. Niemelä J, Sten C-G, Taka M, Winterhalter B (1987) Turun-Salon seudun maaperä. Suomen geologinen kartta 1:100 000. Maaperäkarttojen selitykset, lehdet 1043 ja 2021 [Quaternary deposits in the Turku-Salo map-sheet areas. Geological map of Finland 1:100 000. Explanation to the maps of Quaternary deposits, sheets 1043 and 2021]. Geological Survey of Finland, Espoo, FinlandGoogle Scholar
  47. Oikari H (1981) Pohjaveden lämpötila Etelä- ja Keski-Suomessa vuosina 1975–1978. Vesihallituksen lähde- ja pohjavesiputkihavaintoihin perustuva selvitys [Groundwater temperature in southern and central Finland in 1975–1978]. MSc Thesis, University of Helsinki, Finland, 65 ppGoogle Scholar
  48. Oke TR (1973) City size and the urban heat island. Atmospheric Environ 7:769–779CrossRefGoogle Scholar
  49. Parnachev VP, Banks D, Berezovsky AY, Garbe-Schönberg D (1999) Hydrochemical evolution of Na–SO4–Cl groundwaters in a cold, semi-arid region of southern Siberia. Hydrogeol J 7:546–560. doi: 10.1007/s100400050228 CrossRefGoogle Scholar
  50. Parsons ML (1970) Groundwater thermal regime in glacial complex. Water Resour Res 6:1701–1720CrossRefGoogle Scholar
  51. Preston-Whyte R A (1970) A spatial model of an urban heat island. J Appl Meteorol 9: 571–573. doi:  10.1175/1520-0450(1970)009<0571:ASMOAU>2.0.CO;2
  52. Punkari M (1982) Glacial morphology and dynamics in the eastern part of the Baltic shield interpreted using Landsat imagery. Photogramm J Finland 9:77–93Google Scholar
  53. Rantala J, Arola T (2004) Piispanristin-Skanssin alueen ympäristötekninen maaperä ja pohjavesiselvitys [Environmental soil and groundwater report for Piispanristi-Skanssi area]. Project report, Golder Associates Oy, Turku, FinlandGoogle Scholar
  54. Rosen B, Gabrielsson A, Fallsvik J, Hellström G, Nilsson G (2001) System för värme och kyla ur mark: en nulägesbeskrivning [Systems for heating and cooling from the ground: a status report]. Varia 511, Statens Geotekniska Institut, Lindköping, SwedenGoogle Scholar
  55. Saarnisto M, Salonen V-P (1995) Glacial history of Finland. In: Ehlers J, Kozarski S, Gibbard PL (eds) Glacial deposits in north-east Europe. Balkama, Rotterdam, The Netherlands, pp 3–10Google Scholar
  56. Saner D, Juraske R, Kübert M, Blum P, Helweg S, Bayer P (2010) Is it only CO2 that matters? A life cycle perspective on shallow geothermal system. Renew Sust Energ Rev 14:1798–1813. doi: 10.1016/j.rser.2010.04.002 CrossRefGoogle Scholar
  57. Sanner B (2001) Shallow geothermal energy. GHC Q Bull 22(2). geoheat.oit/bulletin/bull22-2/art4.pdf. Accessed July 2014
  58. Silliman SE, Booth DF (1993) Analysis of time-series measurements of sediment temperature for identification of gaining vs. loosing portions of Juday Creek, Indiana. J Hydrol 146:131–148CrossRefGoogle Scholar
  59. Sörensen SN, Reffstrup J, Qvale B (1994) Groundwater used for cooling and seasonal storage in Denmark. In: Kangas MT, Lund PT (eds) Thermal energy storage: better economy, environment, technology: proceedings, vol 2. Calorstock ’94, 6th International Conference on Thermal Energy Storage, 22–25 August 1994, Espoo, FinlandGoogle Scholar
  60. Soveri J (1985) Influence of meltwater on the amount and composition of groundwater in Quaternary deposits in Finland. National Board of Waters, Helsinki, FinlandGoogle Scholar
  61. Statistics Finland (2012a) Official statistics of Finland (OSF): energy supply and consumption (e-publication). 4th Quarter 2012, Statistics Finland, Helsinki, Finland. http://www.stat.fi/tup/kunnat/kuntatiedot/398.html. Accessed 7 Nov 2012
  62. Suomi J, Käyhkö J (2011) The impact of environmental factors on urban temperature variability in the coastal city of Turku, SW Finland. Int J Climatol 32:451–463. doi: 10.1002/joc.2277 CrossRefGoogle Scholar
  63. The Geological Survey of Finland (2012) Lohja bedrock map. Geological Survey of Finland, Espoo, Finland. http://geomaps2.gtk.fi/activemap. Accessed 12 July 2012
  64. Tanicughi M, Uemura T, Jago-on K (2007) Combined effects of urbanisation and global warming on subsurface temperature in four Asian cities. Vadose Zone J 6:591–6. doi: 10.2136/vzj2006.0094 CrossRefGoogle Scholar
  65. Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int J Climatol 30(15):2247–2256. doi: 10.1002/joc.2046 CrossRefGoogle Scholar
  66. Woo M-K, Marsh P (2005) Snow, frozen soils and permafrost hydrology in Canada 1999–2002. Hydrol Process 19:215–229. doi: 10.1002/hyp.5772 CrossRefGoogle Scholar
  67. Yalcin T, Yetemen O (2009) Local warming of groundwaters caused by the urban heat island effect in Istanbul, Turkey. Hydrogeol J 17:1247–1255. doi: 10.1007/s10040-009-0474-7 CrossRefGoogle Scholar
  68. Yaws C (1998) Chemical properties handbook: physical thermodynamic, environmental, transport, safety and health related properties for organic and inorganic chemicals. McGraw-Hill, New YorkGoogle Scholar
  69. Zhu K, Blum P, Ferguson G, Balke K-D, Bayer P (2010) The geothermal potential of urban heat islands. Environ Res Lett 5:044002. doi: 10.1088/1748-9326/5/4/044002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Geosciences and Geography c/o Golder Associates OyUniversity of HelsinkiTurkuFinland
  2. 2.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations