Advertisement

Hydrogeology Journal

, Volume 22, Issue 6, pp 1229–1232 | Cite as

Overview of hydrogeological safety assessment modeling conducted for the proposed high-level nuclear waste repository site at Forsmark, Sweden

  • Jan-Olof SelroosEmail author
  • Sven Follin
Essay

Background

In an essay in a previous issue of Hydrogeology Journal, Selroos and Follin (2014) outlined the hydrogeological site-descriptive modeling performed regarding the Forsmark site in Sweden in order to support an application for a future repository for high-level spent nuclear fuel. The essay was accompanied by three individual reports (Follin and Stigsson 2014; Follin et al. 2014; Follin and Hartley 2014) where more detail was given on various modeling aspects (e.g. parameterization of a deformation zone model, development of a discrete fracture network model, and model integration and confirmatory testing of the integrated model against various types of data). The aim of the site-descriptive hydrogeological modeling was to develop a hydrogeological account of the past and present conditions at the site by analyzing, assessing, and modeling the data obtained during the stage of surface-based site characterization. Corresponding site-descriptive models for other earth science...

Keywords

Crystalline rocks Waste disposal Numerical modelling Sweden Forsmark 

Aperçu de la modélisation hydrogéologique d’évaluation de la sûreté réalisée pour le siteproposé pour le stockage de déchets nucléaires de haute activité à Forsmark, Suède

Visión general de la evaluación modelística de la seguridad hidrogeológicarealizada para el repositorio propuesto para residuos nucleares de alta actividaden el sitio de Forsmark, Suecia

概述水文地质安全评价模型有关高放射核废物库在瑞典Forsmark

Visão geral dos modelos hidrogeológicos de avaliação de segurança realizadospara o depósito de resíduos nucleares de alto nível de radiação proposto paraForsmark, Suécia

Notes

Acknowledgements

The work described in this essay was fully funded by the Swedish Nuclear Fuel and Waste Management Company (SKB) as part of the safety assessment project SR-Site.

References

  1. Andersson J, Skagius K, Winberg A, Lindborg T, Ström A (2013) Site-descriptive modelling for a final repository for spent nuclear fuel in Sweden. Environ Earth Sci 69(3):1045–1060. doi: 10.1007/s12665-013-2226-1 CrossRefGoogle Scholar
  2. Banwart S, Wikberg P, Olsson O (1997) A testbed for underground nuclear repository design. Environ Sci Technol 31(11):510–514. doi: 10.1021/es972564h
  3. Bockgård N, Marsic N, Follin S (2014) Effects on groundwater flow of abandoned engineered structures for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J. doi: 10040_10.1007/s10040-014-1162-9
  4. Follin S, Stigsson M (2014) A transmissivity model for deformation zones in fractured crystalline rock and its possible correlation to in situ stress at the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22:299–311. doi: 10.1007/s10040-013-1078-9 CrossRefGoogle Scholar
  5. Follin S, Hartley L, Rhén I, Jackson P, Joyce S, Roberts D, Swift D (2014) A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22:313–331. doi: 10.1007/s10040-013-1080-2 CrossRefGoogle Scholar
  6. Follin S, Hartley L (2014) Approaches to confirmatory testing of a groundwater flow model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22:333–349. doi: 10.1007/s10040-013-1079-8 CrossRefGoogle Scholar
  7. Hartley L, Joyce S (2013) Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden. J Hydrol. doi: 10.1016/j.jhydrol.2013.07.031 Google Scholar
  8. Hedin A, Kautsky U, Morén L, Selroos J-O, Sellin P, Ström A, Papp T (2001) SR 97: Post-closure safety for a KBS-3 deep repository for spent nuclear fuel: overview. In: Hart K P, Lumpkin G R (eds) Scientific Basis for Nuclear Waste Management XXIV. Mater. Res. Soc. Symp. Proc., vol 663. Mater. Res. Soc., Warrendale, PA, pp 739–746Google Scholar
  9. Hedin A et al (2011) The SR-Site safety assessment for licensing a spent fuel repository in Sweden. In: Int. High-Level Radioactive Waste Management Conference 2011 (IHLRWMC 2011), vol 1, Albuquerque, NM, April 2011, pp 193–207Google Scholar
  10. Joyce S, Hartley L, Applegate D, Hoek J, Jackson P (2014) Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J. doi: 10040_10.1007/s10040-014-1165-6
  11. Selroos J-O, Follin S (2014) Overview of hydrogeological site-descriptive modeling conducted for the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22:295–298. doi: 10.1007/s10040-013-1077-x CrossRefGoogle Scholar
  12. SKB (1983) Final storage of spent nuclear fuel: KBS-3—summary. Svensk Kärnbränslehantering AB, StockholmGoogle Scholar
  13. SKB (1999) Deep repository for spent nuclear fuel SR 97: post-closure safety. SKB TR-99-06, Svensk Kärnbränslehantering AB, StockholmGoogle Scholar
  14. SKB (2010) Handling of future human actions in the safety assessment SR-Site. SKB TR-10-53, Svensk Kärnbränslehantering AB, StockholmGoogle Scholar
  15. SKB (2011) Long-term safety for the final repository for spent nuclear fuel at Forsmark: main report of the SR-Site project. SKB TR-11-01, Svensk Kärnbränslehantering AB, StockholmGoogle Scholar
  16. Svensson U (2001a) A continuum representation of fracture networks, part I: method and basic test cases. J Hydrol 250:170–186CrossRefGoogle Scholar
  17. Svensson U (2001b) A continuum representation of fracture networks, part II: application to the Äspö Hard Rock Laboratory. J Hydrol 250:187–205CrossRefGoogle Scholar
  18. Svensson U, Ferry M, Kuylenstierna H-O (2010) DarcyTools, version 3.4: concepts, methods and equations. SKB R-07-38, Svensk Kärnbränslehantering AB, StockholmGoogle Scholar
  19. Svensson U, Follin S (2010) Groundwater flow modelling of the excavation and operational phases: Forsmark. SKB R-09-19, Svensk Kärnbränslehantering AB, StockholmGoogle Scholar
  20. Thegerström C, Olsson O (2011) The license application for the KBS-3-system: a milestone for the Swedish spent fuel disposal program. In: 13th Int. High-Level Radioactive Waste Management Conference 2011 (IHLRWMC 2011), vol 1, Albuquerque, NM, April 2011, pp 184–192Google Scholar
  21. Vieno T, Nordman H (1999) Safety assessment of spent fuel disposal in Hästholmen, Kivetty, Olkiluoto and Romuvaara: TILA-99. Posiva report 99–07, Posiva, Eurajoki, FinlandGoogle Scholar
  22. Vidstrand P, Follin S, Selroos J-O, Näslund J-O, Rhén I (2013) Modeling of groundwater flow at depth in crystalline rock beneath a moving ice sheet margin, exemplified by the Fennoscandian Shield, Sweden. Hydrogeol J 21:239–255. doi: 10.1007/s10040-012-0921-8 CrossRefGoogle Scholar
  23. Vidstrand P, Follin S, Selroos J-O, Näslund J-O (2014) Groundwater flow modeling of periods with periglacial and glacial climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J. doi: 10040_10.1007/s10040-014-1164-7

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Swedish Nuclear Fuel and Waste Management Company (SKB)StockholmSweden
  2. 2.SF GeoLogic ABTäbySweden

Personalised recommendations