Advertisement

Hydrogeology Journal

, Volume 22, Issue 8, pp 1905–1920 | Cite as

Modelling the response of fresh groundwater to climate and vegetation changes in coral islands

  • Jean-Christophe ComteEmail author
  • Jean-Lambert Join
  • Olivier Banton
  • Eric Nicolini
Paper

Abstract

In coral islands, groundwater is a crucial freshwater resource for terrestrial life, including human water supply. Response of the freshwater lens to expected climate changes and subsequent vegetation alterations is quantified for Grande Glorieuse, a low-lying coral island in the Western Indian Ocean. Distributed models of recharge, evapotranspiration and saltwater phytotoxicity are integrated into a variable-density groundwater model to simulate the evolution of groundwater salinity. Model results are assessed against field observations including groundwater and geophysical measurements. Simulations show the major control currently exerted by the vegetation with regards to the lens morphology and the high sensitivity of the lens to climate alterations, impacting both quantity and salinity. Long-term changes in mean sea level and climatic conditions (rainfall and evapotranspiration) are predicted to be responsible for an average increase in salinity approaching 140 % (+8 kg m−3) when combined. In low-lying areas with high vegetation density, these changes top +300 % (+10 kg m−3). However, due to salinity increase and its phytotoxicity, it is shown that a corollary drop in vegetation activity can buffer the alteration of fresh groundwater. This illustrates the importance of accounting for vegetation dynamics to study groundwater in coral islands.

Keywords

Small island hydrology Freshwater lens Climate change Plant transpiration Salt-water/fresh-water relations 

Modéliser la réponse des eaux souterraines douces aux changements climatiques et de végétation dans les îles coralliennes

Résumé

Dans les îles coralliennes, l’eau souterraine est une ressource d’eau douce cruciale pour la vie terrestre, y compris pour l’alimentation en eau humaine. La réponse de la lentille d’eau douce aux changements climatiques attendus et aux modifications de la végétation qui en découlent est quantifiée pour la Grande Glorieuse, une île corallienne basse de l'Ouest de l’Océan Indien. Des modèles distribués de la recharge, de l’évapotranspiration et de la phytotoxicité vis-à-vis du sel sont intégrés au sein d’un modèle d’eau souterraine à densité variable pour simuler l’évolution de la salinité de l’eau souterraine. Les résultats du modèle sont évalués au regard des observations de terrain, comprenant des mesures hydrogéologiques et géophysiques. Les simulations montrent le contrôle majeur exercé à l'heure actuelle par la végétation sur la morphologie de la lentille et la forte sensibilité de la lentille aux modifications du climat, qui ont des impacts à la fois quantitatifs et sur la salinité. Les changements à long terme et combinés du niveau moyen de la mer et des conditions climatiques (pluie et évapotranspiration) apparaissent comme responsables d’une augmentation moyenne de la salinité atteignant 140 % (+8 kg.m−3). Dans les zones basses avec une forte densité de végétation, ces changements atteignent jusqu'à +300 % (+10 kg.m−3). Cependant, du fait de l’augmentation de la salinité et de sa phytotoxicité, il est montré que la diminution résultante de l’activité de la végétation peut atténuer la dégradation des eaux souterraines. Cela illustre l’importance de prendre en compte la dynamique de la végétation lors de l’étude des eaux souterraines des îles coralliennes.

Modelación de la respuesta del agua subterránea dulce a los cambios climáticos y de vegetación en islas coralinas

Resumen

En las islas coralinas, el agua subterránea es un recurso de agua dulce crítico para la vida terrestre, incluyendo el abastecimiento de agua para consumo humano. Se cuantifica la respuesta de las lentes de agua dulce a los cambios climáticos esperados y subsecuentes alteraciones de la vegetación en Grande Glorieuse, una isla coralina de baja altura en el Océano Indico Occidental. Se integraron modelos distribuidos de recarga, evapotranspiración y la fitotoxicidad de plantas en un modelo de agua subterránea de densidad variable para simular la evolución de la salinidad del agua subterránea. Los resultados del modelo se evalúan contra observaciones de campo incluyendo mediciones de agua subterránea y geofísicas. Las simulaciones muestran el gran control habitualmente ejercido por la vegetación en relación a la morfología de las lentes y la alta sensibilidad de las lentes a alteraciones climáticas, impactando sobre la cantidad y salinidad del agua subterránea. Se predice que la combinación de los cambios a largo plazo en el nivel medio del mar y en las condiciones climáticas (precipitación y evapotranspiración), es responsable de un incremento promedio en la salinidad que se aproxima a 140 % (+8 kg m−3). En áreas de baja altura con una alta densidad de vegetación, estos cambios alcanzan a +300 % (+10 kg m−3). Sin embargo, debido al incremento de salinidad y su fitotoxicidad, se muestra como corolario que una caída en la vegetación puede amortiguar la alteración del agua subterránea dulce. Esto ilustra la importancia de tener en cuenta la dinámica de la vegetación para estudiar el agua subterránea en islas coralinas.

模拟地下淡水对珊瑚岛气候和植被变化的响应

摘要

在珊瑚岛上,地下水是陆地生活包括人类供水的重要淡水资源。本 文定量分析了西印度洋低洼珊瑚岛---Grande Glorieuse 岛的淡水透镜体 对预期气候变化和随后的植被变化的响应。补给、蒸发蒸腾和危害植物的 毒性等分布式模型整合为可变密度地下水模型,以模拟地下水盐度演化。 根据野外观测数据,包括地下水和地球物理测量数据评价了模型结果。模 拟结果显示了针对影响数量和盐度的透镜体形态和透镜体对气候变化高度 灵敏性目前植被所发挥的主要控制作用。预测了平均海平面和气象条件 (降水和蒸发蒸腾)的长期变化,结果显示这些长期变化加在一起使盐度增 加,接近140 % (+8 kg m−3)。在低洼地区由于植被密集,导致变化达到 + 300 % (+10 kg m−3)。然而,由于盐度增加及其危害植物的毒性,推论 的植被活动降低可缓冲地下淡水的改变。这说明研究珊瑚岛地下水,弄清 楚植被带动力学非常重要。

Modelação da resposta da água subterrânea doce às alterações no clima e na vegetação em ilhas de coral

Resumo

Em ilhas de coral, a água subterrânea é um recurso crucial de água doce para a vida terrestre, incluindo o abastecimento humano. A resposta das lentes de água doce às expetáveis alterações climáticas e subsequentes alterações na vegetação é quantificada para a Grande Glorieuse, uma ilha baixa de coral no ocidente do Oceano Índico. Modelos distribuídos de recarga, evaporação e fitotoxicidade de plantas são integrados num modelo de águas subterrâneas de densidade variável para simular a evolução da salinidade da água subterrânea. Os resultados do modelo são aferidos através de observações de campo, incluindo dados de águas subterrâneas e geofísicos. As simulações mostram o controlo fundamental exercido atualmente pela vegetação em relação à morfologia das lentes e a alta sensibilidade das lentes em relação às alterações climáticas, impactando quer a quantidade, quer a salinidade. Quando combinadas, as alterações de longo prazo do nível dos oceanos e das condições climáticas (precipitação e evapotranspiração) são previsivelmente responsáveis por um incremento médio da salinidade na ordem dos 140 % (+8 kg m−3). Em áreas baixas com elevada densidade de vegetação, estas alterações atingem os +300 % (+10 kg m−3). No entanto, devido ao incremento da salinidade e à sua fitotoxicidade, mostra-se que uma redução na atividade da vegetação pode tamponar as alterações na água subterrânea doce. Isto ilustra a importância de contar com a dinâmica da vegetação para estudar a água subterrânea em ilhas de coral.

Notes

Acknowledgements

This research was carried out within the scope of the French ANR research program by the Project “INTERFACE - Vulnerability and Climate”. Writing up of the manuscript was partially supported by the Griffith Geoscience Research Award, Ireland. We are grateful to Météo France for access to the temperature and precipitation records, provided through the Climathèque agreement between Météo France and the University of Reunion Island. We are also grateful to P. Bauer-Gottwein for kindly providing the source code of the modified version of SEAWAT that was applied to carry out the phytotoxicity simulations in the last model scenario as well as our colleague R. Cassidy for assistance in code implementation. We thank the associate editor K. Hinsby as well as A. Vandenbohede and two anonymous reviewers for their valuable comments on the manuscript.

References

  1. Ataie-Ashtiani B, Volker RE, Lockington DA (1999) Tidal effects on sea water intrusion in unconfined aquifers. J Hydrol 216:17–31. doi: 10.1016/S0022-1694(98)00275-3 CrossRefGoogle Scholar
  2. Ayers JF, Vacher HL (1986) Hydrogeology of an atoll island: a conceptual model from detailed study of a Micronesian example. Ground Water 24:185–98. doi: 10.1111/j.1745-6584.1986.tb00994.x CrossRefGoogle Scholar
  3. Bailey RT, Jenson JW, Olsen AE (2009) Numerical modeling of atoll island hydrogeology. Ground Water 47:184–196. doi: 10.1111/j.1745-6584.2008.00520.x CrossRefGoogle Scholar
  4. Bailey RT, Jenson JW, Taboroši D (2013) Estimating the freshwater-lens thickness of atoll islands in the Federated States of Micronesia. Hydrogeol J 21:441–457. doi: 10.1007/s10040-012-0923-6 CrossRefGoogle Scholar
  5. Banerjee P, Singh VS (2011) Optimization of pumping rate and recharge through numerical modeling with special reference to small coral island aquifer. Phys Chem Earth 36:1363–1372. doi: 10.1016/j.pce.2011.04.014 CrossRefGoogle Scholar
  6. Battistini R, Cremers G (1972) Geomorphology and vegetation of Iles Glorieuses. Atoll Res Bull 159:1–10CrossRefGoogle Scholar
  7. Bauer-Gottwein P, Rasmussen NF, Feificova D, Trapp S (2008) Phytotoxicity of salt and plant salt uptake: modeling ecohydrological feedback mechanisms. Water Resour Res 44, W04418. doi: 10.1029/2007WR006067 CrossRefGoogle Scholar
  8. Bobba AG (2002) Numerical modelling of saltwater intrusion due to human activities and sea level change in the Godavari delta, India. Hydrol Sci J 47:S67–S80CrossRefGoogle Scholar
  9. Bobba AG, Singh VP, Berndtsson R, Bengtsson L (2000) Numerical simulation of salt-water intrusion into Laccadive Island aquifers due to climate change. J Geol Soc India 55:589–612Google Scholar
  10. Bredehoeft JD, Papadopulos SS, Cooper HH Jr (1982) Groundwater: the water-budget myth. In: Scientific basis of water resource management: studies in geophysics. National Academy Press, Washington, DCGoogle Scholar
  11. BRGM (1967) Etude hydrogéologique de l’île Glorieuse, Rapport TAN.67-A/11 [Hydrogeological study of Glorieuse Island, Report TAN.67-A/11]. Bureau de Recherches Géologiques et Minières, MadagascarGoogle Scholar
  12. Buddemeier RW, Oberdorfer JA (1988) Hydrogeology and hydrodynamics of coral reef pore waters. Paper presented at 6th International Coral Reef Symposium. James Cook University, Townsville, AustraliaGoogle Scholar
  13. Carneiro JF, Boughriba M, Correia A, Zarhloule Z, Rimi A, El Houadi B (2010) Evaluation of climate change effects in a coastal aquifer in Morocco using a density-dependent numerical model. Environ Earth Sci 61:241–252. doi: 10.1007/s12665-009-0339-3 CrossRefGoogle Scholar
  14. Chan E, Elevitch CR (2006) Cocos nucifera (coconut). In: Elevitch CR (ed) Species profiles for Pacific Island agroforestry. PAR, Holuahola, Hawai’iGoogle Scholar
  15. Christensen JH, Hewitson B, Busuioc A (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge Univ. Press, CambridgeGoogle Scholar
  16. Comte JC, Banton O (2007) Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers. Geophys Res Lett 34, L10402. doi: 10.1029/2007GL029981 CrossRefGoogle Scholar
  17. Comte JC, Banton O, Join JL, Cabioch G (2010) Evaluation of effective groundwater recharge of freshwater lens in small islands by the combined modeling of geoelectrical data and water heads. Water Resour Res 46, W06601. doi: 10.1029/2009WR008058 CrossRefGoogle Scholar
  18. Conservatoire Botanique National de Mascarin (2014) Flore et végétations des îles Éparses [Flora and vegetations of the Scattered Islands]. http://ileseparses.cbnm.org. Accessed 15 May 2014
  19. Diaz Arenas A, Falkland A (1991) Characteristics of small islands. In: Falkland A (ed) Hydrology and water resources of small islands: a practical guide, UNESCO studies and reports in Hydrology 49. UNESCO, ParisGoogle Scholar
  20. Doll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006. doi: 10.1088/1748-9326/4/3/035006 CrossRefGoogle Scholar
  21. Doll P, Fiedler K (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885. doi: 10.5194/hess-12-863-2008 CrossRefGoogle Scholar
  22. Don NC, Hang NTM, Araki H, Yamanishi H, Koga K (2006) Salinization processes in an alluvial coastal lowland plain and effect of sea water level rise. Environ Geol 49:743–751. doi: 10.1007/s00254-005-0119-7 CrossRefGoogle Scholar
  23. Duncan D (2012) Freshwater under threat: Pacific islands, vulnerability assessment of freshwater resources to environmental change. UNEP/SPC, BangkokGoogle Scholar
  24. Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Chang 2:342–345. doi: 10.1038/nclimate1413 CrossRefGoogle Scholar
  25. Gargominy O (2003) Iles Eparses [Scattered Islands]. In: Gargominy O (ed) Biodiversité et conservation dans les collectivités françaises d’Outre-Mer [Biodiversity and conservation in French overseas collectivities]. UICN, ParisGoogle Scholar
  26. Ghassemi F, Alam K, Howard K (2000) Fresh-water lenses and practical limitations of their three-dimensional simulation. Hydrogeol J 8:521–537. doi: 10.1007/s100400000087 CrossRefGoogle Scholar
  27. Gonneea ME, Mulligan AE, Charette MA (2013) Climate-driven sea level anomalies modulate coastal groundwater dynamics and discharge. Geophys Res Lett 40:2701–2706. doi: 10.1002/grl.50192 CrossRefGoogle Scholar
  28. Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405:532–560. doi: 10.1016/j.jhydrol.2011.05.002 CrossRefGoogle Scholar
  29. Griggs JE, Peterson FL (1993) Ground-water flow dynamics and development strategies at the atoll scale. Ground Water 31:209–220. doi: 10.1111/j.1745-6584.1993.tb01813.x CrossRefGoogle Scholar
  30. Grillot G (1957) Les problèmes biologiques relatifs aux plantes tolérant l’eau salée ou saumâtre, et à l’utilisation d’une telle eau pour l’irrigation [Biological problems related to plants tolerating salt or brackish water, and the use of such water for irrigation]. In: Grillot G, Hayward HE, Howe ED (eds) Utilisation des eaux salines: compte rendu de recherche UNESCO, recherches sur la zone aride IV [Use of saline waters: UNESCO research report, researches on the arid zone IV]. UNESCO, ParisGoogle Scholar
  31. Guillaume MMM, Reyss JL, Pirazzoli PA, Bruggemann JH (2013) Tectonic stability since the last interglacial offsets the Glorieuses Islands from the nearby Comoros archipelago. Coral Reefs 32:719–726. doi: 10.1007/s00338-012-1006-9 CrossRefGoogle Scholar
  32. Guo W, Langevin CD (2002) User's guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. US Geol Surv Tech Water Resour Invest 6-A7Google Scholar
  33. Hassan MM, El-Samnoudi IM (1993) Effect of soil salinity on yield and leaf mineral content of date palm trees. Egypt J Hortic 20:315–322Google Scholar
  34. Holman IP, Allen DM, Cuthbert MO, Goderniaux P (2012) Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol J 20:1–4. doi: 10.1007/s10040-011-0805-3 CrossRefGoogle Scholar
  35. IPCC (2007) Causes of changes. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Climate change 2007: synthesis report. IPCC, GenevaGoogle Scholar
  36. Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350. doi: 10.1038/nature11983 CrossRefGoogle Scholar
  37. Jocson JMU, Jenson JW, Contractor DN (2002) Recharge and aquifer response: northern Guam lens aquifer, Guam, Mariana Islands. J Hydrol 260:231–254. doi: 10.1016/S0022-1694(01)00617-5 CrossRefGoogle Scholar
  38. Join JL, Banton O, Comte JC, Leze J, Massin F, Nicolini E (2011) Assessing spatio-temporal patterns of groundwater salinity in small coral islands in the Western Indian Ocean. West Indian Ocean J Mar Sci 10:1–12Google Scholar
  39. Jones IC, Banner JL (2003) Hydrogeologic and climatic influences on spatial and interannual variation of recharge to a tropical karst island aquifer. Water Resour Res 39:1253. doi: 10.1029/2002WR001543 CrossRefGoogle Scholar
  40. Kench PS (1998) Physical processes in an Indian Ocean atoll. Coral Reefs 17:155–168. doi: 10.1007/s003380050110 CrossRefGoogle Scholar
  41. Ketabchi H, Mahmoodzadeh D, Ataie-Ashtiani B, Werner AD, Simmons CT (2013) Sea-level rise impact on a fresh groundwater lens in two-layer small islands. Hydrol Process. doi: 10.1002/hyp.10059 Google Scholar
  42. Kundzewicz ZW, Doll P (2009) Will groundwater ease freshwater stress under climate change? Hydrol Sci J 54:665–675. doi: 10.1623/hysj.54.4.665 CrossRefGoogle Scholar
  43. Langevin CD, Thorne DT Jr, Dausman AM, Sukop MC, Guo W (2007) SEAWAT version 4: a computer program for simulation of multi-species solute and heat transport. US Geological Survey Techniques and Methods, book, 6; chapter A22, USGS, Reston, VAGoogle Scholar
  44. Lubczynski MW (2009) The hydrogeological role of trees in water-limited environments. Hydrogeol J 17:247–259. doi: 10.1007/s10040-008-0357-3 CrossRefGoogle Scholar
  45. Météo France (2014) Données publiques: données climatologiques [Public data: climatic data]. https://donneespubliques.meteofrance.fr/. Accessed 15 May 2014
  46. Mimura N, Nurse L, McLean RF, Agard J, Briguglio L, Lefale P, Payet R, Sem G (2007) Small islands. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  47. Mohd HA, Sarva MR, Aris AZ (2010) A numerical modelling of seawater intrusion into an oceanic island aquifer, Sipadan Island, Malaysia. Sains Malaysiana 39:525–532Google Scholar
  48. Mollema PN, Antonellini M (2013) Seasonal variation in natural recharge of coastal aquifers. Hydrogeol J 21:787–797. doi: 10.1007/s10040-013-0960-9 CrossRefGoogle Scholar
  49. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. doi: 10.1126/science.1185782 CrossRefGoogle Scholar
  50. Oberdorfer JA, Hogan PJ, Buddemeier RW (1990) Atoll island hydrogeology: flow and freshwater occurrence in a tidally dominated system. J Hydrol 120:327–340. doi: 10.1016/0022-1694(90)90157-S CrossRefGoogle Scholar
  51. Ohler JG (1999) The coconut palm. In: Ohler JG (ed) Modern coconut management: palm cultivation and products, chap 2. FAO, RomeGoogle Scholar
  52. Oude Essink GHP, van Baaren ES, de Louw PGB (2010) Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res 46, W00F04. doi: 10.1029/2009WR008719 CrossRefGoogle Scholar
  53. Payne DF (2010) Effects of climate change on saltwater intrusion at Hilton Head Island, SC. U.S.A. Proceedings of SWIM21 - 21st Salt Water Intrusion Meeting, 21-26 June 2010, Azores, PortugalGoogle Scholar
  54. Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  55. Praveena SM, Abdullah MH, Bindin K, Aris AZ (2012) Modeling of water balance components in a small island via a numerical model application. J Coast Res 28:202–209. doi: 10.2112/JCOASTRES-D-10-00057.1 CrossRefGoogle Scholar
  56. Ranjan SP, Kazama S, Sawamoto M (2006) Effects of climate and land use changes on groundwater resources in coastal aquifers. J Environ Manag 80:25–35. doi: 10.1016/j.jenvman.2005.08.008 CrossRefGoogle Scholar
  57. Rasmussen P, Sonnenborg TO, Goncear G, Hinsby K (2013) Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrol Earth Syst Sci 17:421–443. doi: 10.5194/hess-17-421-2013 CrossRefGoogle Scholar
  58. Robins NS (2013) A review of small island hydrogeology: progress (and setbacks) during the recent past. Q J Eng Geol Hydrogeol 46:157–165. doi: 10.1144/qjegh2012-063 CrossRefGoogle Scholar
  59. Robinson C, Li L, Barry DA (2007) Effect of tidal forcing on a subterranean estuary. Adv Water Resour 30:851–865. doi: 10.1016/j.advwatres.2006.07.006 CrossRefGoogle Scholar
  60. Roupsard O et al (2006) Partitioning energy and evapo-transpiration above and below a tropical palm canopy. Agric For Meteorol 139:252–268. doi: 10.1016/j.agrformet.2006.07.006 CrossRefGoogle Scholar
  61. Rozell DJ, Wong T (2010) Effects of climate change on groundwater resources at Shelter Island, New York State, USA. Hydrogeol J 18:1657–1665. doi: 10.1007/s10040-010-0615-z
  62. Schneider JC, Kruse SE (2003) A comparison of controls on freshwater lens morphology of small carbonate and siliciclastic islands: examples from barrier islands in Florida, USA. J Hydrol 284:253–69. doi: 10.1016/j.jhydrol.2003.08.002 CrossRefGoogle Scholar
  63. Schneider JA, Kruse SE (2005) Assessing natural and anthropogenic impacts on freshwater lens morphology on small barrier islands: Dog Island and St. George Island, Florida. Hydrogeol J 14:131–145. doi: 10.1007/s10040-005-0442-9 CrossRefGoogle Scholar
  64. Sulzbacher H, Wiederhold H, Siemon B, Grinat M, Igel J, Burschil T, Günther T, Hinsby K (2012) Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods. Hydrol Earth Syst Sci 16:3621–3643. doi: 10.5194/hess-16-3621-2012 CrossRefGoogle Scholar
  65. Taylor R et al (2012) Ground water and climate change. Nat Clim Chang 3:322–329. doi: 10.1038/nclimate1744 CrossRefGoogle Scholar
  66. Terry JP, Chui TFM (2012) Evaluating the fate of freshwater lenses on atoll islands after eustatic sea-level rise and cyclone-driven inundation: a modelling approach. Glob Planet Chang 88–89:76–84. doi: 10.1016/j.gloplacha.2012.03.008 CrossRefGoogle Scholar
  67. Trapp S, Feificova D, Rasmussen NF, Bauer-Gottwein P (2008) Plant uptake of NaCl in relation to enzyme kinetics and toxic effects. Environ Exp Bot 64:1–7. doi: 10.1016/j.envexpbot.2008.05.001 CrossRefGoogle Scholar
  68. Underwood MR, Peterson FL, Voss CI (1992) Groundwater lens dynamics of atoll islands. Water Resour Res 28:2889–2902. doi: 10.1029/92WR01723 CrossRefGoogle Scholar
  69. USGS (2013) Published reports and articles using the SEAWAT code. http://water.usgs.gov/ogw/seawat/pubs.html. Accessed 15 May 2014
  70. Van der Velde M, Javaux M, Vanclooster M, Clothier BE (2006) El Niño-Southern Oscillation determines the salinity of the freshwater lens under a coral atoll in the Pacific Ocean. Geophys Res Lett 33, L21403. doi: 10.1029/2006GL027748 CrossRefGoogle Scholar
  71. Vandenbohede A, Luyten K, Lebbe L (2008) Effects of global change on heterogeneous coastal aquifers: a case study in Belgium. J Coastal Res 24:160–170. doi: 10.2112/05-0447.1 CrossRefGoogle Scholar
  72. Vincent LA et al (2011) Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961–2008. J Geophys Res 116, D10108. doi: 10.1029/2010JD015303 CrossRefGoogle Scholar
  73. Werner AD, Bakker M, Post VAE, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26. doi: 10.1016/j.advwatres.2012.03.004 CrossRefGoogle Scholar
  74. White I, Falkland T (2010) Management of freshwater lenses on small Pacific islands. Hydrogeol J 18:227–246. doi: 10.1007/s10040-009-0525-0 CrossRefGoogle Scholar
  75. White I, Falkland T (2011) Reducing groundwater vulnerability in Carbonate Island countries in the Pacific. In: Treidel H, Martin-Bordes JL, Gurdak JJ (eds) Climate change effects on groundwater resources: a global synthesis of findings and recommendations, IAH International Contributions to Hydrogeology 27. Taylor and Francis, LondonGoogle Scholar
  76. White I, Falkland T, Metutera T, Metai E, Overmars M, Perez P, Dray A (2007) Climatic and human influences on groundwater in low atolls. Vadose Zone J 6:581–590. doi: 10.2136/vzj2006.0092 CrossRefGoogle Scholar
  77. World Health Organisation (ed) (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva, p 564. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jean-Christophe Comte
    • 1
    Email author
  • Jean-Lambert Join
    • 2
  • Olivier Banton
    • 3
  • Eric Nicolini
    • 2
  1. 1.Queen’s University Belfast, School of Planning, Architecture and Civil EngineeringBelfastUK
  2. 2.Laboratoire GéoSciences Réunion IPGPCNRS, UMR 7154, University of Reunion IslandReunion IslandFrance
  3. 3.Laboratoire d’HydrogéologieUMR 1114 EMMAH, University of Avignon-INRAAvignonFrance

Personalised recommendations