Advertisement

Hydrogeology Journal

, Volume 22, Issue 7, pp 1605–1624 | Cite as

Three-dimensional hydrofacies assemblages in ice-contact/proximal sediments forming a heterogeneous ‘hybrid’ hydrostratigraphic unit in central Illinois, USA

  • Lisa A. AtkinsonEmail author
  • Martin Ross
  • Andrew J. Stumpf
Paper

Abstract

Three-dimensional (3-D) hydrostratigraphic modelling of glacial sediment assemblages was undertaken as part of a groundwater study in central Illinois, USA. Sediments comprising these assemblages, informally referred to as the Glasford deglacial unit, form discontinuous sand-gravel layers including small aquifer zones, and fine-grained interstratified layers that may impede groundwater movement. This unit is stratigraphically above a regional aquitard overlying the important Mahomet aquifer. The study improves understanding of the internal stratigraphic architecture and hydrostratigraphic character of the unit. Data include descriptions of continuous cores, profiles of near-surface and downhole geophysical logs, and sediment descriptions from water well logs. Discrete bounding surfaces constructed using gOcad represent the main lithofacies assemblages forming a 3-D framework. The framework was further partitioned into a 3-D cellular grid for mapping the spatial distribution of fine- and coarse-grained facies. Hydraulic conductivity (K G) estimates were used to convert these lithofacies into hydrofacies. Medium- to coarse-grained hydrofacies (K G = 1.25 × 10−5 m/s) represent 46 % of the total volume, the remainder being fine-grained hydrofacies (K G = 3.01 × 10−8 m/s). The spatial pattern of these hydrofacies is highly heterogeneous, thus, designating the Glasford deglacial unit as an aquifer or aquitard would be conceptually misleading. The term “hybrid hydrostratigraphic unit” is introduced to better represent conceptually this type of unit in hydrostratigraphic models.

Keywords

3-D geological models Heterogeneity Hydrostratigraphy Groundwater flow USA 

Disposition tridimensionnelle des hydrofaciès dans des sédiments périglaciaires formant une unité hydrostratigraphique ‘hybride’ hétérogène dans l’Illinois central, Etats Unis d’Amérique

Résumé

La modélisation tridimensionnelle hydrostratigraphique (3-D) des assemblages de sédiments glaciaires a été entreprise comme partie d’une étude d’eaux souterraines dans l’Illinois central, Etats Unis d’Amérique. Les sédiments de ce complexe, appelé simplement unité périglaciaire de Glasford, comportent des couches de sables et de graviers incluant des petits niveaux aquifères et des dépôts à grains fins pouvant empêcher le déplacement de l’eau. Stratigraphiquement, cette unité surmonte un aquitard régional recouvrant l’important aquifère Mahomet. L’étude améliore la connaissance de l’architecture stratigraphique et des caractéristiques hydrographiques de l’unité. Les données incluent la description complète des carottes, des logs géophysiques de sub-surface et fond de trou, et la description des sédiments des forages d’eau. Des surfaces discrètes construites avec gOcad représentent les principaux assemblages de lithofaciès formant un cadre 3-D. Puis ce cadre a été divisé par une grille cellulaire 3-D pour représenter la distribution spatiale des faciès de granulométrie fine et grossière. Les estimations de la conductivité hydraulique (K G) ont été utilisées pour convertir ces lithofaciès en hydrofaciès. Les hydrofaciès fins à grossiers (K G = 1.25 × 10−5 m/s) représentent 46 % du volume total, le restant étant représenté par des hydrofaciès à grains fins (K G = 3.01 × 10−8 m/s). La particularité de ces hydrofaciès est d’être hautement hétérogène, ainsi la désignation de l’unité périglaciaire de Glasford en tant qu’aquifère ou qu’aquitard serait conceptuellement une erreur. Le terme « unité stratigraphique hybride» est introduit pour mieux représenter conceptuellement ce type d’unité dans des modèles hydrostratigraphiques.

Ensamblajes de hidrofacies tridimensionales en sedimentos proximales en contacto con el hielo que forman una unidad hidroestratigrafica híbrida en el centro de Illinois, EEUU

Resumen

Se realizó una modelación hidroestratigráfica tridimensional (3-D) del ensamblaje de sedimentos glaciales como parte de un estudio de agua subterránea en Illinois central, EEUU. Los sedimentos que comprendían estos ensamblajes, informalmente denominados como la unidad deglacial Glasford, forman capas discontinuas de arenas y gravas incluyendo pequeñas zonas de acuíferos, y capas interestratificadas de grano fino que pueden impedir el movimiento del agua subterránea. Esta unidad está estratigráficamente por encima de un acuitardo regional que cubre al importante acuífero Mahomet. El estudio mejora la comprensión de la arquitectura estratigráfica interna y del carácter hidroestratigráfico de la unidad. Los datos incluyen descripciones de testigos continuos, perfiles de registros geofísicos cercanos a la superficie y en profundidad, y descripciones de sedimentos de a partir de perfilajes de pozos de agua. Las superficies discretas de contorno construidas usando gOcad representan los principales ensamblajes de las litofacies que forman el marco 3-D. El marco fue posteriormente particionado en una grilla de células 3-D para mapear la distribución espacial de facies de granos finos y gruesos. Las estimaciones de la conductividad hidráulica (K G) fueron usadas para convertir estas litofacies en hidrofacies. Las hidrofacies de grano medio a grueso (K G = 1.25 × 10−5 m/s) representan el 46 % del volumen total, siendo el resto hidrofacies de grano fino (K G = 3.01 × 10−8 m/s). La configuración espacial de estas hidrofacies es altamente heterogénea, de manera que la designar la unidad deglacial Glasford como un acuífero o acuitardo sería conceptualmente erróneo. Se introduce el término “unidad hidroestratigráfica híbrida” para representar mejor conceptualmente este tipo de unidades en modelos hidroestratigráficos.

美国伊利诺斯州中部构成异质“混合物”水文地层单元的冰接触/临近沉积物中三维水相组合

摘要

作为美国伊利诺斯州地下水研究的一部分,对冰川沉积物组合的三维水文地层进行了模拟。构成这些组合的沉积物,通俗地称为Glasford冰消期单元,形成了包括小的含水层带的非连续砂砾层及阻碍地下水运移的细颗粒层间层。这个单元地层上来说位于覆盖着重要的Mahomet含水层的区域隔水层之上。研究增进了对单元内部地层结构和水文地层特征的了解和认识。资料包括连续岩心、近地表剖面和井内地球物理测井描述及水井测井的沉积物描述。利用gOcad建立的离散界面代表形成三维框架的主要岩相组合。框架被进一步分割为一个三维单元格,用于细颗粒和粗颗粒相空间分布填图。用水力传导率 (K G) 估算数把这些岩相换算成水相。中到粗颗粒水相 (K G = 1.25 × 10−5 m/s) 代表总体积的46%,剩下的为细颗粒水相 (K G = 3.01 × 10−8 m/s)。这些水相的空间模式高度非均质,因此,把Glasford冰消期单元标作一个含水层或隔水层概念上会产生误导。引用术语“混合物水文地层单元”可以更好地从概念上表述水文地层模型中这类单元。

Conjuntos de hidrofácies tridimensionais em sedimentos formados próximo ou em contacto com gelo formando uma unidade hidroestratigráfica heterogénea "híbrida" no centro de Illinois, EUA

Resumo

Como parte de um estudo de águas subterrâneas no centro de Illinois (EUA), foi realizada modelação tridimensional (3-D) hidroestratigráfica de sedimentos glaciais. O conjunto desses sedimentos é informalmente conhecido como unidade deglacial Glasford, formando camadas descontínuas de areia-cascalho incluindo pequenas zonas aquíferas e camadas interestratificadas de grão fino, que podem impedir o movimento da água subterrânea. Esta unidade está estratigraficamente acima de um aquitardo regional, sobrejacente ao importante aquífero Maomé. O estudo aumenta a compreensão da arquitetura estratigráfica interna e do caráter hidroestratigráfico da unidade. Os dados incluem descrições de carotagem contínua, perfis geofísicos sub-superficiais e de poços, e descrições de sedimentos provenientes de perfis de poços de água. Superfícies limitantes discretas, construídas usando o gOcad, representam as principais litofácies, formando uma estrutura 3-D. A estrutura foi ainda dividida numa grelha celular em 3-D para o mapeamento da distribuição espacial das fácies de grão fino e de grão grosseiro. Foram utilizadas estimativas da condutividade hidráulica (K G) para converter estas litofácies em hidrofácies. Hidrofácies de grão médio a grosseiro (K G =1.25 × 10−5 m/s) representam 46 % do volume total, sendo as restantes hidrofácies de grão fino (K G =3.01 × 10−8 m/s). O padrão espacial destas hidrofácies é muito heterogêneo, pelo que, designar a unidade deglacial Glasford como um aquífero ou aquitardo seria conceitualmente enganoso. O termo "unidade hidroestratigráfica híbrida" é introduzido para melhor representar conceitualmente este tipo de unidade em modelos hidroestratigráficos.

Notes

Acknowledgements

This research was part of a Master of Science (MSc) degree completed by L. Atkinson at the University of Waterloo. This study was made possible largely through funding by Illinois American Water and the Illinois State Geological Survey (ISGS). Additional financial support was provided to M. Ross by the Canadian Water Network and the Canada Foundation for Innovation. Amec-Geomatrix Consultants Inc. also provided a graduate scholarship to L. Atkinson. The authors would like to thank Richard Berg and David Larson for their helpful comments and suggestions, which improved the original version of this manuscript.

Supplementary material

10040_2014_1156_MOESM1_ESM.pdf (66 kb)
ESM 1 (PDF 65 kb)

References

  1. Alexander M, Berg SJ, Illman WA (2011) Field study of hydrogeologic characterization methods in a heterogeneous aquifer. Ground Water 49(3):365–382. doi: 10.1111/j.1745-6584.2010.00729.x CrossRefGoogle Scholar
  2. Allen DM, Schuurman N, Deshpande A et al (2008) Data integration and standardization in cross-border hydrogeological studies: a novel approach to hydrostratigraphic model development. Environ Geol 53:1441–1453. doi: 10.1007/s00254-007-0753-3 CrossRefGoogle Scholar
  3. Artimo A, Saraperä S, Ylander I (2008) Methods for integrating an extensive geodatabase with 3D modeling and data management tools for the Virttaankangas artificial recharge project, southwestern Finland. Water Resour Manag 22:1723–1739. doi: 10.1007/s11269-008-9250-z CrossRefGoogle Scholar
  4. Atkinson LA (2011) Subsurface analysis of late Illinoian deglacial sediments in east-central Illinois, United States, and its implications for hydrostratigraphy. MSc Thesis, Univ. of Waterloo, Canada. http://www.collectionscanada.gc.ca/obj/thesescanada/vol2/OWTU/TC-OWTU-6458.pdf. Accessed 03 July 2013
  5. Atkinson LA, Ross M, Stumpf AJ, Ismail A (2011) Sedimentology and 3-D architecture of subsurface facies of the Illinoian deglaciation. In: Proceedings of Geohydro 2011- Joint Meeting of the Canadian Quaternary Association (CANQUA) and the Canadian Chapter of the International Association of Hydrogeologists (IAH-CNC), Quebec City, Canada, 28–31 August 2011Google Scholar
  6. Bajc AF, Newton MJ (2007) Mapping the subsurface of Waterloo Region, Ontario Canada: an improved framework of Quaternary geology for hydrogeological applications. J Maps 3:219–230. doi: 10.4113/jom.2007.56 CrossRefGoogle Scholar
  7. Berg RC, Kempton JP, Cartwright K (1984) Potential for contamination of shallow aquifers in Illinois. Ill State Geol Surv Circ 532, 30 pp. http://library.isgs.uiuc.edu/Pubs/pdfs/circulars/c532.pdf. Accessed 01 December 2013
  8. Bleuer NK (2004) Slow-logging subtle sequences: the gamma-ray log character of glacigenic and other unconsolidated sedimentary sequences: Ind Geol Surv Spec Rep 65, 39 ppGoogle Scholar
  9. Bonomi T (2009) Database development and 3D modeling of textural variations in heterogeneous, unconsolidated aquifer media: application to the Milan plain. Comput Geosci 35:134–135. doi: 10.1016/j.cageo.2007.09.006 CrossRefGoogle Scholar
  10. Committee RWSP (2009) A plan to improve the planning and management of water supplies in east-central Illinois. Mahomet Aquifer Consortium, Champaign, IL, 92 ppGoogle Scholar
  11. Cummings DI, Russell HAJ, Sharpe DR (2012) Buried-valley aquifers in the Canadian Prairies: geology, hydrogeology, and origin. Can J Earth Sci 49(9):987–1004. doi: 10.1139/e2012-041 CrossRefGoogle Scholar
  12. Engdahl N, Weissmann G, Bonal N (2010) An integrated approach to shallow aquifer characterization: combining geophysics and geostatistics. Comput Geosci 14(2):217–229. doi: 10.1007/s10596-009-9145-y CrossRefGoogle Scholar
  13. Eyles N, Eyles CH, Miall AD (1983) Lithofacies types and vertical profile models: an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences. Sedimentology 30(3):393–410. doi: 10.1111/j.1365-3091.1983.tb00679.x CrossRefGoogle Scholar
  14. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Upper Saddle River, NJ, 604 ppGoogle Scholar
  15. Gaud MN, Smith GA, McKenna SA (2004) Relating small-scale permeability heterogeneity to lithofacies distribution. In: Bridge J, Hyndman D (eds) Aquifer characterization. Society of Sedimentary Geology, Tulsa, OK, pp 55–66CrossRefGoogle Scholar
  16. Gerber RE, Howard K (2002) Hydrogeology of the Oak Ridges Moraine aquifer system: implications for protection and management from the Duffins Creek Watershed. Can J Earth Sci 39:1333–1348. doi: 10.1139/e02-058 CrossRefGoogle Scholar
  17. Grimley DA Phillips (eds) 2011 Ridges, mounds, and valleys: glacial-interglacial history of the Kaskaskia basin, southwestern Illinois. 55th Midwest Friends of the Pleistocene Conference. Ill State Surv Open File Series 2011-1, 144 ppGoogle Scholar
  18. Hackley KC, Panno SV, Anderson TF (2010) Chemical and isotopic indicators of groundwater evolution in the basal sands of a buried bedrock valley in the Midwestern United States: implications for recharge, rock–water interactions, and mixing. Geol Soc Am Bull 122(7–8):1047–1066. doi: 10.1130/B26574.1 CrossRefGoogle Scholar
  19. Hansel AK, McKay DE (2010) Quaternary Period. In: Kolata DR, Nimz CK (eds) Geology of Illinois. Ill State Geol Surv, Champaign, IL, pp 216–247Google Scholar
  20. Harp DR, Vesselinov VV (2010) Stochastic inverse method for estimation of geostatistical representation of hydrogeologic stratigraphy using borehole logs and pressure observations. Stoch Environ Res Risk Assess 24(7):1023–1042. doi: 10.1007/s00477-010-0403-2 CrossRefGoogle Scholar
  21. Heinz J, Aigner T (2003) Hierarchical dynamic stratigraphy in various Quaternary gravel deposits, Rhine Glacier area (SW Germany): implications for hydrostratigraphy. Int J Earth Sci 92(6):923–938. doi: 10.1007/s00531-003-0359-2 CrossRefGoogle Scholar
  22. Herzog BL, Stiff BJ, Chenoweth KL et al (1994) Buried bedrock surface of Illinois, 3rd edn. Ill State Geol Surv Illinois Map 5Google Scholar
  23. Herzog, BL, Wilson, SD, Larson, DR et al (1995) Hydrogeology and groundwater availability in southwest McLean and southeast Tazewell counties, part 1: aquifer characterization. Ill State Geol Surv Coop Groundwater Rep 17, 70 pp. http://library.isgs.uiuc.edu/Pubs/pdfs/coops/coop17.pdf. Accessed 01 December 2013
  24. Herzog BL, Larson DR, Abert CC et al (2003) Hydrostratigraphic modeling of a complex, glacial-drift aquifer system for importation into MODFLOW. Ground Water 41:57–65. doi: 10.1111/j.1745-6584.2003.tb02568.x CrossRefGoogle Scholar
  25. Horberg L (1945) A major buried valley in east-central Illinois and its regional relationships. J Geol 53 (5):349–359. http://www.jstor.org/stable/30056681. Accessed 01 December 2013
  26. Horberg CL (1950) Bedrock topography of Illinois. Ill State Geol Surv Bull 73:111Google Scholar
  27. Illinois State Geological Survey (1996) Major sand and gravel aquifers and bedrock aquifers within 300 feet of the surface in Illinois. Ill State Geol Surv Map, scale 1:500,000Google Scholar
  28. Ismail A, Stumpf A, Bauer B (2014) Seismic characterization of glacial sediments in central Illinois. J Appl Geophys 101:1–10. doi: 10.1016/j.jappgeo.2013.11.009 CrossRefGoogle Scholar
  29. Johnson WH (1976) Quaternary stratigraphy in Illinois: status and current problems. In: Mahaney WC (ed) Quaternary stratigraphy of North America. Dowden, Stroudsburg, PA, 161 ppGoogle Scholar
  30. Johnson WH, Follmer LR, Gross DL et al (1972) Pleistocene stratigraphy of east-central Illinois. Ill State Geol Surv Guidebook 9:97. http://hdl.handle.net/2142/32567. Accessed 01 December 2013
  31. Johnson WH, Hansel AK, Bettis EA III et al (1997) Late Quaternary temporal and event classifications, Great Lakes region, North America. Quat Res 47:1–12CrossRefGoogle Scholar
  32. Kaufmann O, Martin T (2008) 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Comput Geosci 34:278–290. doi: 10.1016/j.cageo.2007.09.005 CrossRefGoogle Scholar
  33. Kehew AE, Boettger WM (1986) Depositional environments of buried-valley aquifers in North Dakota. Ground Water 24(6):728–734. doi: 10.1111/j.1745-6584.1986.tb01688.x CrossRefGoogle Scholar
  34. Kempton JP, Morse WJ, Visocky AP (1982) Hydrogeologic evaluation of sand and gravel aquifers for municipal groundwater supplies in east-central Illinois. Ill State Geol Surv and Ill State Water Surv Coop Groundwater Rep 8, 59 ppGoogle Scholar
  35. Kempton JP, Johnston WH, Heigold PC et al (1991) Mahomet Bedrock Valley in east-central Illinois; topography, glacial drift stratigraphy, and hydrogeology. In: Melhorn WN, Kempton JP (eds) Geology and hydrogeology of the Teays-Mahomet Bedrock Valley System, GSA Special Paper 25, pp 91–129. doi: 10.1130/SPE258-p91
  36. Klingbeil R, Kleineidam S, Asprion U, Aigner T, Teutsch G (1999) Relating lithofacies to hydrofacies: outcrop-based hydrogeological characterisation of Quaternary gravel deposits. Sediment Geol 129:299–310. doi: 10.1016/S0037-0738(99)00067-6 CrossRefGoogle Scholar
  37. Kostic B, Becht A, Aigner T (2005) 3-D sedimentary architecture of a Quaternary gravel delta (SW-Germany): implications for hydrostratigraphy. Sediment Geol 181:147–171. doi: 10.1016/j.sedgeo.2005.07.004 CrossRefGoogle Scholar
  38. Larson TH (1994) Geophysical investigation of the Ticona Bedrock Valley aquifer near Streator, Illinois. Ill State Geol Surv Open File Series 1994–9, 24 pp. http://archive.org/details/geophysicalinves19949lars. Accessed 01 December 2013
  39. Larson DR, Herzog BL, Larson TH (2003a) Groundwater geology of DeWitt, Piatt, and Northern Macon Counties, Illinois. Ill State Geol Surv Environ Geol 155, 35 pp. http://library.isgs.uiuc.edu/Pubs/pdfs/egs/eg155.pdf. Accessed 01 December 2013
  40. Larson DR, Mehnert E, Herzog BL (2003b) The Mahomet aquifer: a transboundary resource in east-central Illinois. Water Int 28(2):170–180. doi: 10.1080/02508060308691682 CrossRefGoogle Scholar
  41. Lelliott MR, Bridge DMC, Kessler H (2006) The application of 3D geological modelling to aquifer recharge assessments in an urban environment. Q J Eng Geol Hydrogeol 39:293–302. doi: 10.1144/1470-9236/05-027 CrossRefGoogle Scholar
  42. Mallet J-L (1989) Discrete smooth interpolation. ACM-Trans Graph 8 (2):121–144. doi: 10.1145/62054.62057 DOI: 10.1145/62054.62057#_self
  43. Mallet J-L (2002) Geomodeling. In: Journel AG (ed) Applied geostatistics series, Oxford University Press, OxfordGoogle Scholar
  44. Martin PJ, Frind EO (1998) Modeling a complex multiaquifer system: the Waterloo Moraine. Ground Water 34:679–690. doi: 10.1111/j.1745-6584.1998.tb02843.x CrossRefGoogle Scholar
  45. Maxey GB (1964) Hydrostratigraphic units. J Hydrol 2(2):124–129. doi: 10.1016/0022-1694(64)90023-X CrossRefGoogle Scholar
  46. Miall AD (1977) A review of the braided-river depositional environment. Earth-Sci Rev 13(1):1–62. doi: 10.1016/0012-8252(77)90055-1 CrossRefGoogle Scholar
  47. Miall AD (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Sci Rev 22(4):261–308. doi: 10.1016/0012-8252(85)90001-7 CrossRefGoogle Scholar
  48. Mickelson DM, Colgan PM (2003) The southern Laurentide Ice Sheet. Dev Quat Sci 1:1–16. doi: 10.1016/S1571-0866(03)01001-7 Google Scholar
  49. Nelson WJ (1995) Structural features in Illinois. Ill State Geol Surv Bull 100, 144 ppGoogle Scholar
  50. Nilsson B, Hojberg AL, Refsgaard JC, Troldborg L (2007) Uncertainty in geological and hydrogeological data. Hydrol Earth Syst Sci 11(5):1551–1561. doi: 10.5194/hess-11-1551-2007 CrossRefGoogle Scholar
  51. Odong J (2008) Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J Amer Sci 4(1):1–6. http://www.jofamericanscience.org/journals/am-sci/0401/01_0287_JustineOdong_Evaluation_am0401.pdf. Accessed 01 December 2013
  52. Richmond GM, Fullerton DS (1986) Summation of Quaternary glaciations in the United States of America. Quat Sci Rev 5:183–196CrossRefGoogle Scholar
  53. Ritzi RW, Dominic DF, Slesers AJ et al (2000) Comparing statistical models of physical heterogeneity in buried-valley aquifers. Water Resour Res 36:3179–3192. doi: 10.1029/2000WR900143 CrossRefGoogle Scholar
  54. Roadcap GS, Knapp V, Wehrmann HA et al. (2011) Meeting east-central Illinois water needs to 2050: potential impacts on the Mahomet aquifer and surface reservoirs. Ill State Water Surv Contract Rep 2011–08, 188 pp. http://www.isws.illinois.edu/pubdoc/CR/ISWSCR2011-08.pdf. Accessed 01 December 2013
  55. Ross M, Parent M, Lefebvre R (2005) 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada. Hydrogeol J 13:690–707. doi: 10.1007/s10040-004-0365-x CrossRefGoogle Scholar
  56. Schwartz FW, Zhang H (2003) Fundamentals of ground water. Wiley, New York, 583 ppGoogle Scholar
  57. Seaber PR (1982) Definition of hydrostratigraphic units. In: Proceedings of the 2nd Annual Symposium on Florida Hydrogeology. Northwest Florida Water Manag District Pub Inform Bull 82:25–26Google Scholar
  58. Seaber PR (1988) Hydrostratigraphic units. In: Back W, Rosenshein JS, Seaber PR (eds) Hydrogeology: the geology of North America, vol O-2. Geological Society of America, Boulder, CO, pp 9–14Google Scholar
  59. Sharpe DR, Dyke LD, Hinton MJ et al. (1996) Groundwater prospects in the Oak Ridges Moraine area, southern Ontario: application of regional geological models. In: Current research 1996-E, Geol Surv Canada, Ottawa, pp 181–190Google Scholar
  60. Sharpe DR, Russell HAJ, Logan, CE (2002) Geological characterization of a regional aquitard: Newmarket Till, Oak Ridges Moraine area, southern Ontario. Ground and water: theory to practice. In: Proceedings of the 55th Canadian Geotechnical and 3rd Joint IAH–CNC and CGS Groundwater Specialty Conferences, Niagara Falls, ON, 20–23 Oct. 2002Google Scholar
  61. Shaver RB, Pusc SW (1992) Hydraulic barriers in Pleistocene buried-valley aquifers. Ground Water 30(1):21–28. doi: 10.1111/j.1745-6584.1992.tb00807.x CrossRefGoogle Scholar
  62. Soller DR, Price SD, Kempton JP et al. (1999) Three-dimensional geological maps of Quaternary sediments in east-central Illinois. US Geol Surv Geol Invest Ser I-Map 2669Google Scholar
  63. Stephenson DA, Fleming AH, Mickelson DM (1988) Glacial deposits. In: Back W, Rosenshein JS, Seaber PR (eds) Hydrogeology: the geology of North America, vol O-2. Geol. Soc. Amer., Boulder, CO, pp 301–314Google Scholar
  64. Stumpf AJ, Atkinson LA (2014) Cross sections of the geology over the Mahomet Bedrock Valley in east-central Illinois. Ill State Geol Surv Illinois Map 19Google Scholar
  65. Stumpf AJ, Dey WS (eds) (2012) Understanding the Mahomet aquifer: geological, geophysical, and hydrogeological studies in Champaign County and adjacent areas. Draft Contract no. IL Amer Water 2007-02899, Ill State Geological Survey, Champaign, ILGoogle Scholar
  66. Stumpf AJ, Ismail A (2013) High-resolution seismic reflection profiling: an aid for resolving the Pleistocene stratigraphy of a buried valley in central Illinois, USA. Ann Glaciol 54:10–20. doi: 10.3189/2013AoG64A602 CrossRefGoogle Scholar
  67. van der Kamp G, Maathuis H (2011) The unusual and large drawdown response of buried-valley aquifers to pumping. Ground Water 50:207–215. doi: 10.1111/j.1745-6584.2011.00833.x CrossRefGoogle Scholar
  68. Weissmann GS, Fogg GE (1999) Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. J Hydrol 226:48–65. doi: 10.1016/S0022-1694(99)00160-2
  69. Willman HB, Frye JC (1970) Pleistocene stratigraphy of Illinois. Illinois State Geol Surv Bull 94Google Scholar
  70. Wilson SD, Roadcap GS, Herzog BL et al (1998) Hydrogeology and ground-water availability in southwest McLean and southeast Tazewell counties, part 2: aquifer modeling and final report. Ill State Wat Surv and Ill State Geol Surv Cooperative Groundwater Report 19, 138 pp. http://www.isws.illinois.edu/pubdoc/COOP/ISWSCOOP-19.pdf. Accessed 01 December 2013

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lisa A. Atkinson
    • 1
    Email author
  • Martin Ross
    • 1
  • Andrew J. Stumpf
    • 2
  1. 1.Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada
  2. 2.Illinois State Geological Survey, Prairie Research InstituteUniversity of Illinois Urbana-ChampaignChampaignUSA

Personalised recommendations