Hydrogeology Journal

, Volume 22, Issue 6, pp 1293–1305 | Cite as

Long-term increase in diffuse groundwater recharge following expansion of rainfed cultivation in the Sahel, West Africa

  • Maïmouna Ibrahim
  • Guillaume Favreau
  • Bridget R. Scanlon
  • Jean Luc Seidel
  • Mathieu Le Coz
  • Jérôme Demarty
  • Bernard Cappelaere
Paper

Abstract

Rapid population growth in sub-Saharan West Africa and related cropland expansion were shown in some places to have increased focused recharge through ponds, raising the water table. To estimate changes in diffuse recharge, the water content and matric potential were monitored during 2009 and 2010, and modeling was performed using the Hydrus-1D code for two field sites in southwest Niger: (1) fallow land and (2) rainfed millet cropland. Monitoring results of the upper 10 m showed increased water content and matric potential to greater depth under rainfed cropland (>2.5 m) than under fallow land (≤1.0 m). Model simulations indicate that conversion from fallow land to rainfed cropland (1) increases vadose-zone water storage and (2) should increase drainage flux (∼25 mm year−1) at 10-m depth after a 30–60 year lag. Therefore, observed regional increases in groundwater storage may increasingly result from diffuse recharge, which could compensate, at least in part, groundwater withdrawal due to observed expansion in irrigated surfaces; and hence, contribute to mitigate food crises in the Sahel.

Keywords

Land-use change Semiarid region Unsaturated zone Numerical modeling Niger 

Augmentation sur le long terme de la recharge diffuse des aquifères suite à l’expension des cultures pluviales dans le Sahel, Afrique de l’Ouest

Résumé

La forte croissance démographique en Afrique de l’Ouest sub-saharienne et l’expansion associée des zones cultivées ont induit dans certains secteurs une augmentation de la recharge via le réseau de drainage, conduisant à une hausse piézométrique. Afin d’estimer les modifications de la recharge diffuse, la teneur en eau et le potentiel hydrique matriciel ont été enregistrés sur la période 2009-2010, et une modélisation utilisant le code Hydrus-1D a été réalisée sur deux sites dans le Sud-Ouest du Niger : (1) terres en jachère et (2) cultures pluviales de millet. Les résultats du suivi dans les premiers 10 m de la zone non saturée ont induit une augmentation de la teneur en eau et du potentiel hydrique matriciel à plus grande profondeur sous cultures pluviales (>2.5 m) que sous terres en jachère (≤1.0 m). Les simulations indiquent que la conversion de terres en jachère en terres cultivées non irriguées (1) augmente le stockage de l’eau dans la zone vadose et (2) devrait augmenter le flux de drainage (∼25 mm/an) à 10 m de profondeur avec un temps de transit de 30 à 60 ans. Par conséquent, les augmentations régionales observées du stockage de l’eau dans l’aquifère peuvent de plus en plus résulter de la recharge diffuse, qui pourrait compenser, au moins en partie, les diminutions de niveau piézométrique dues à l’expansion des surfaces irriguées; et ainsi, contribuer à atténuer les crises alimentaires au Sahel.

Incremento a largo plazo en la recarga difusa de agua subterránea siguiendo la expansión de cultivos de secano en el Sahel, África Occidental

Resumen

Se demostró que en algunos lugares el rápido crecimiento rápido de la población en el sur del África Occidental subsahariana y la subsecuente expansión de tierras agrícolas han incrementado la recarga focalizada a través de bañaderos, elevando el nivel freático. Para estimar los cambios en la recarga difusa se monitorearon el contenido de agua y el potencial matricial durante 2009 y 2010, y se realizó un modelizacion usando el código Hydrus-1D para dos sitios de campo en el sudoeste de Niger: (1) barbucheras y (2) cultivos de mijo de secano. Los resultados del monitoreo de los 10 m superiores mostraron un incremento del contenido de agua y del potencial matricial a mayor profundidad bajo cultivos de secano (>2.5 m) que bajo barbecho (≤1.0 m). Las simulaciones de los modelos indican que la conversión de barbecho a cultivos de secano (1) incrementa el almacenamiento de agua en la zona vadosa y (2) debería incrementar el flujo del drenaje (∼25 mm year−1) a una profundidad de 10-m después 30–60 años de retardo. Por lo tanto, incrementos regionales observados en el almacenamiento de agua subterránea pueden incrementarse progresivamente como resultado de la recarga difusa, lo cual podría compensar, al menos en parte, la depresión del agua subterránea debido a la expansión observada en las superficies irrigadas; y por lo tanto, contribuir a mitigar la crisis de alimentos en el Sahel.

西非Sahel地区靠雨水灌溉的耕种面积扩大之后地下水弥散补给长期增加

摘要

西非撒哈拉以南地区一些地方的人口快速增长及相应的耕地面积扩大增加了通过池塘对地下水的补给,抬高了地下水位。为估算弥散补给变化,监测了2009年 到2010年间的含水量和基质势,采用Hydrus-1D编码对尼日尔西南部两个野外点进行了模拟:(1)休耕地和(2)靠雨水灌溉的小米耕地。上部10米的监测结果显示,靠雨水灌溉的农田含水量和基质势呈增加趋势的深度(>2.5米)比休耕地的(≤1.0)要大。模型模拟表明,休耕地转换成雨水灌溉的农田:(1)渗流带储水量增加,(2)30–60年延迟之后在深度10米处排水通量应当增加 (大约25 mm yr−1)。因此,观测的地下水储量区域性增加可能越来越多地归因于弥散补给,弥散补给至少在某种程度上可以对由于观测到的耕地面积扩大而抽取地下水进行补偿;从而有助于缓解Sahel地区的粮食危机。

Aumento da recarga difusa de águas subterrâneas a longo prazo após a expansão das culturas regadas a partir da precipitação no Sahel, África Ocidental

Resumo

O crescimento populacional rápido na África Ocidental subsariana e a correspondente expansão de culturas agrícolas fez com que, nalguns locais, houvesse um aumento da recarga concentrada através de charcos, elevando o nível freático. Para estimar as alterações da recarga difusa, monitorizou-se o teor de humidade e o potencial matricial em 2009 e 2010, e fez-se a modelação utilizando o código Hydrus-1D em dois locais de estudo no sudoeste do Níger: (1) terreno em pousio e (2) cultura de painço usando a precipitação. Os resultados da monitorização dos 10 m superiores mostraram um teor de humidade e do potencial matricial mais elevado até uma maior profundidade para a cultura regada por precipitação (>2.5 m) em relação à terra de pousio (≤1.0 m). As simulações do modelo indicam que a conversão de terrenos de pousio para as culturas regadas por águas de precipitação (1) aumenta o armazenamento de água da zona vadosa e (2) deverá aumentar o fluxo de drenagem (∼25 mm ano−1) à profundidade de 10 m após um período de 30–60 anos. Portanto, os aumentos observados do armazenamento de água subterrânea podem cada vez mais resultar da recarga difusa, que poderia compensar, pelo menos em parte, a extração de águas subterrâneas devido à expansão observada dos regadios; e assim, contribuir para atenuar crises alimentares no Sahel.

References

  1. Allen RG, Perreira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrig Drain Pap 56, FAO, RomeGoogle Scholar
  2. Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6:279–298CrossRefGoogle Scholar
  3. Boucher M, Favreau G, Nazoumou Y, Cappelaere B, Massuel S, Legchenko A (2012) Constraining groundwater modeling with magnetic resonance soundings. Ground Water 50:775–784CrossRefGoogle Scholar
  4. Boulain N, Cappelaere B, Ramier D, Issoufou HBA, Halilou O, Seghieri J, Guillemin F, Oï M, Gignoux J, Timouk F (2009) Towards an understanding of coupled physical and biological processes in the cultivated Sahel: 2. vegetation and carbon dynamics. J Hydrol 375:190–203CrossRefGoogle Scholar
  5. Cappelaere B, Descroix L, Lebel T, Boulain N, Ramier D, Laurent JP, Favreau G, Boubkraoui S, Boucher M, Bouzou Moussa I, Chaffard V, Hiernaux P, Issoufou HBA, Le Breton E, Mamadou I, Nazoumou Y, Oi M, Ottle C, Quantin G (2009) The AMMA-CATCH experiment in the cultivated Sahelian area of south-west Niger: investigating water cycle response to a fluctuating climate and changing environment. J Hydrol 375(1–2):34–51CrossRefGoogle Scholar
  6. Cuenca RH, Brouwer J, Chanzy A, Droogers P, Galle S, Gaze SR, Sicot M, Stricker H, Angulo-Jaramillo R, Boyle SA, Bromley J, Chehbouni AG, Cooper JD, Dixon AJ, Fies JC, Gandah M, Gaudu JC, Laguerre L, Lecocq J, Soet M, Steward HJ, Vandervaere JP, Vauclin M (1997) Soil measurements during HAPEX-Sahel intensive observation period. J Hydrol 188:224–266CrossRefGoogle Scholar
  7. Desconnets JC, Taupin JD, Lebel T, Leduc C (1997) Hydrology of the Hapex-Sahel Central super-site: surface water drainage and aquifer recharge through the pool systems. J Hydrol 188:155–178CrossRefGoogle Scholar
  8. Diouf A, Lambin EF (2001) Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal. J Arid Environ 48:129–148CrossRefGoogle Scholar
  9. Favreau G, Leduc C, Schroeter P (2002) Reply to comment on “Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger” by Leduc C, Favreau G, Schroeter P, 2001, J Hydrol 243: 43–54. J Hydrol 255:263–265CrossRefGoogle Scholar
  10. Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability and water resources increase in semiarid southwest Niger: a review. Water Resour Res 45, W00A16Google Scholar
  11. Favreau G, Nazoumou Y, Leblanc M, Guero A, Goni IB (2012) Groundwater resources increase in the Iullemmeden Basin, West Africa. In: Treidel H, Martin-Bordes JL, Gurdak JJ (eds) Climate change effects on groundwater resources: a global synthesis of findings and recommendations. IAH, International Contributions to Hydrogeology 27, CRC, Leiden, The NetherlandsGoogle Scholar
  12. Feddes RA, Kowalik P, Zaradny H (1978) Simulation of field water use and crop yield. PUDOC, Wageningen, The NetherlandsGoogle Scholar
  13. Finch JW (2000) Modelling the soil moisture deficits developed under grass and deciduous woodland: the implications for water resources. J Chart Inst Water Environ Manage 14:371–376CrossRefGoogle Scholar
  14. Galle S, Ehrmann M, Peugeot C (1999) Water balance in a banded vegetation pattern: a case study of tiger bush in western Niger. Catena 37:197–216CrossRefGoogle Scholar
  15. Gates JB, Scanlon BR, Xingmin M, Zhang L (2011) Impacts of soil conservation on groundwater recharge in the semi-arid loess plateau, China. Hydrogeol J 19:865–875CrossRefGoogle Scholar
  16. Gaze SR, Simmonds LP, Brouwer J, Bouma J (1997) Measurement of surface redistribution of rainfall and modelling its effect on water balance calculations for a millet field on sandy soil in Niger. J Hydrol 188:267–284CrossRefGoogle Scholar
  17. Gaze SR, Brouwer J, Simmonds LP, Bromley J (1998) Dry season water use patterns under Guiera senegalensis L. shrubs in a tropical savanna. J Arid Environ 40:53–67CrossRefGoogle Scholar
  18. Goutorbe JP, Lebel T, Tinga A, Bessemoulin P, Brouwer J, Dolman AJ, Engman ET, Gash JHC, Hoepffner M, Kabat P, Kerr YH, Monteny B, Prince S, Said F, Sellers P, Wallace JS (1994) Hapex-Sahel: a large-scale study of land atmosphere interactions in the semi-arid tropics. Ann Geophys 12:53–64CrossRefGoogle Scholar
  19. Ibrahim M (2013) Impact of land use changes on groundwater resources in Niger, Sahel. PhD Thesis, Univ Montpellier II, FranceGoogle Scholar
  20. Issoufou HBA, Delzon S, Laurent JP, Saadou M, Mahamane A, Cappelaere B, Demarty J, Oi M, Rambal S, Seghieri J (2013) Change in water loss regulation after canopy clearcut of a dominant shrub in Sahelian agrosystems, Guiera senegalensis JF Gmel. Trees 27(4):1011–1022CrossRefGoogle Scholar
  21. Keese KE, Scanlon BR, Reedy RC (2005) Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour Res 41, W06010CrossRefGoogle Scholar
  22. Khu ST, Werner MGF (2003) Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling. Hydrol Earth Syst Sci 7:680–692CrossRefGoogle Scholar
  23. Kim JH, Jackson RB (2012) A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone J 11:188–222CrossRefGoogle Scholar
  24. L’Hote Y, Mahe G, Some B, Triboulet JP (2002) Analysis of a Sahelian annual rainfall index from 1896 to 2000: the drought continues. Hydrol Sci J 47:563–572CrossRefGoogle Scholar
  25. Le Coz M, Favreau G, Ousmane SD (2013) Modeling increased groundwater recharge due to change from rainfed to irrigated cropping in a semiarid region. Vadose Zone J 12(2). doi : 10.2136/vzj2012.0148
  26. Lebel T, Cappelaere B, Galle S, Hanan N, Kergoat L, Levis S, Peugeot C, Vieux B, Descroix L, Gosset M, Mougin E, Peugeot C, Seguis L (2009) AMMA-CATCH studies in the Sahelian region of West-Africa: an overview. J Hydrol 375:3–13CrossRefGoogle Scholar
  27. Leblanc M, Favreau G, Massuel S, Tweed S, Loireau M, Cappelaere B (2008) Land clearance and hydrological change in the Sahel: SW Niger. Global Planet Change 61:135–150CrossRefGoogle Scholar
  28. Leduc C, Favreau G, Schroeter P (2001) Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger. J Hydrol 243:43–54CrossRefGoogle Scholar
  29. MacDonald AM, Bonsor HC, Dochartaigh BEO, Taylor RG (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7, 024009. doi: 10.1088/1748-9326/7/2/024009
  30. Manyame C, Morgan CL, Heilman JL, Fatondji D, Gerard B, Payne WA (2007) Modeling hydraulic properties of sandy soils of Niger using pedotransfer functions. Geoderma 141:407–415CrossRefGoogle Scholar
  31. Massuel S, Favreau G, Descloitres M, Le Troquer Y, Albouy Y, Cappelaere B (2006) Deep infiltration through a sandy alluvial fan in semiarid Niger inferred from electrical conductivity survey, vadose zone chemistry and hydrological modelling. Catena 67:105–118CrossRefGoogle Scholar
  32. Massuel S, Cappelaere B, Favreau G, Lebel T, Vischel T (2011) Integrated surface water-groundwater modelling in the context of increasing water reserves of a regional Sahelian aquifer. Hydrol Sci J 56:1242–1264CrossRefGoogle Scholar
  33. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522CrossRefGoogle Scholar
  34. Nagumo F (1992) Pedological environment and agro-ecological system of the Sudano-Sahelian zone in Niger, West Africa. Hokkaido Univ., JapanGoogle Scholar
  35. Pan Y, Gong H, Zhou D, Li X, Nakagoshi N (2011) Impact of land use change on groundwater recharge in Guishui River Basin, China. Chin Geogr Sci 21:734–743CrossRefGoogle Scholar
  36. Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical organic and inorganic methods. Springer, BerlinCrossRefGoogle Scholar
  37. Pavelic P, Smakhtin V, Favreau G, Vilholth KG (2012) Water-balance approach for assessing potential for smallholder groundwater irrigation in sub-Saharan Africa. Water SA 38(3):399–405CrossRefGoogle Scholar
  38. Peugeot C, Estèves M, Galle S, Rajot JL, Vandervaere JP (1997) Runoff generation processes: results and analysis of field data collected at the East Central Supersite of the HAPEX-Sahel experiment. J Hydrol 188–189:179–202CrossRefGoogle Scholar
  39. Ramier D, Boulain N, Cappelaere B, Timouk F, Rabanit M, Lloyd CR, Boubkraoui S, Metayer F, Descroix L, Wawrzyniak V (2009) Towards an understanding of coupled physical and biological processes in the cultivated Sahel: 1. energy and water. J Hydrol 375:204–216CrossRefGoogle Scholar
  40. Rockstrom J, Barron J (2007) Water productivity in rainfed systems: overview of challenges and analysis of opportunities in water scarcity prone savannahs. Irrig Sci 25(3):299–311CrossRefGoogle Scholar
  41. Rockstrom J, Jansson PE, Barron J (1998) Seasonal rainfall partitioning under runon and runoff conditions on sandy soil in Niger: on-farm measurements and water balance modeling. J Hydrol 210:68–92CrossRefGoogle Scholar
  42. Scanlon BR, Langford RP, Goldsmith RS (1999) Relationship between geomorphic settings and unsaturated flow in an arid setting. Water Resour Res 35:983–999CrossRefGoogle Scholar
  43. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Change Biol 11:1577–1593CrossRefGoogle Scholar
  44. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370CrossRefGoogle Scholar
  45. Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43, W03437Google Scholar
  46. Scanlon BR, Mukherjee L, Gates J, Reedy RC, Sinha AK (2010) Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert Region, Rajasthan, India. Hydrogeol J 18:959–972CrossRefGoogle Scholar
  47. Schaap M, Leij F, van Genuchten MT (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176CrossRefGoogle Scholar
  48. Seguis L, Cappelaere B, Milesi G, Peugeot C, Massuel S, Favreau G (2004) Simulated impacts of climate change and land-clearing on runoff from a small Sahelian catchment. Hydrol Process 18:3401–3413CrossRefGoogle Scholar
  49. Siebert S, Doll P, Hoogeveen J, Faures JM, Frenken K, Feick S (2005) Development and validation of the global map of irrigation areas. Hydrol Earth Syst Sci 9:535–547CrossRefGoogle Scholar
  50. Simmers I (2003) Understanding water in a dry environment. IAH International Contributions to Hydrogeology 23, Taylor and Francis, LondonCrossRefGoogle Scholar
  51. Simunek J, van Genuchten MT, Sejna M (2005) The HYDRUS-ID software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 3.0. Dept of Environ. Sci., Univ. of California, Riverside, CAGoogle Scholar
  52. Taylor RG et al (2013) Ground water and climate change. Nat Clim Chang 3:322–329CrossRefGoogle Scholar
  53. Torou BM, Favreau G, Barbier B, Pavelic P, Illou M, Sidibe F (2013) Constraints and opportunities for groundwater irrigation arising from hydrologic shifts in the Iullemmeden Basin, south-western Niger. Water Int 38(4):465–479CrossRefGoogle Scholar
  54. Valentin C, Rajot JL, Mitja D (2004) Responses of soil crusting, runoff and erosion to fallowing in the subhumid and semi-arid regions of West Africa. Agric Ecosyst Environ 104:287–302CrossRefGoogle Scholar
  55. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  56. van Vliet N, Reenberg A, Vang Rasmussen L (2013) Scientific documentation of crop land changes in the Sahel: a half empty box of knowledge to support policy? J Arid Environ 95:1–13CrossRefGoogle Scholar
  57. World Bank (2011) Africa development indicators. The World Bank, Washington, DCGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Maïmouna Ibrahim
    • 1
    • 2
  • Guillaume Favreau
    • 3
  • Bridget R. Scanlon
    • 4
  • Jean Luc Seidel
    • 5
  • Mathieu Le Coz
    • 6
  • Jérôme Demarty
    • 3
  • Bernard Cappelaere
    • 3
  1. 1.UMR 5569 HSM, Pl. E. Bataillon, cc. MSEUniversité Montpellier 2 (UM2)Montpellier cedex 5France
  2. 2.Faculté des Sciences, Département de GéologieUniversité Abdou Moumouni de NiameyNiameyNiger
  3. 3.UMR 5569 HSM, Pl. E. Bataillon, cc. MSEInstitut de Recherche pour le Développement (IRD)Montpellier cedex 5France
  4. 4.Bureau of Economic Geology, Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA
  5. 5.UMR 5569 HSM, Place E. Bataillon, CC MSECentre National de la Recherche Scientifique (CNRS)MontpellierFrance
  6. 6.IC2MP/HydrasaUniversité de PoitiersPoitiersFrance

Personalised recommendations