Advertisement

Hydrogeology Journal

, Volume 22, Issue 5, pp 1055–1066 | Cite as

Evidence and mechanisms for Appalachian Basin brine migration into shallow aquifers in NE Pennsylvania, USA

  • Garth T. Llewellyn
Report

Abstract

Multiple geographic information system (GIS) datasets, including joint orientations from nine bedrock outcrops, inferred faults, topographic lineaments, geophysical data (e.g. regional gravity, magnetic and stress field), 290 pre-gas-drilling groundwater samples (Cl–Br data) and Appalachian Basin brine (ABB) Cl–Br data, have been integrated to assess pre-gas-drilling salinization sources throughout Susquehanna County, Pennsylvania (USA), a focus area of Marcellus Shale gas development. ABB has migrated naturally and preferentially to shallow aquifers along an inferred normal fault and certain topographic lineaments generally trending NNE–SSW, sub-parallel with the maximum regional horizontal compressive stress field (orientated NE–SW). Gravity and magnetic data provide supporting evidence for the inferred faults and for structural control of the topographic lineaments with dominant ABB shallow groundwater signatures. Significant permeability at depth, imparted by the geologic structures and their orientation to the regional stress field, likely facilitates vertical migration of ABB fluids from depth. ABB is known to currently exist within Ordovician through Devonian stratigraphic units, but likely originates from Upper Silurian strata, suggesting significant migration through geologic time, both vertically and laterally. The natural presence of ABB-impacted shallow groundwater has important implications for differentiating gas-drilling-derived brine contamination, in addition to exposing potential vertical migration pathways for gas-drilling impacts.

Keywords

Marcellus shale Fractured rocks Lineaments Salinization USA 

Preuve et mécanismes de la migration de saumures du Bassin Appalachien dans les aquifères peu profonds du NE de la Pennsylvanie, Etats-Unis

Résumé

De nombreux jeux de données de systèmes d’information géographique (SIG), comprenant l’ orientation des joints de neuf affleurements de roche, des failles supposées, des linéaments topographiques, des données géophysiques (par exemple gravité régionale, champs magnétique et de contrainte), 290 échantillons d’eau souterraine (Cl–Br) et de données Cl–Br provenant de saumures du bassin appalachien (Appalachian Basin brine, ABB), ont été intégrés pour évaluer des sources de salinisation antérieurement à la foration de forage de gaz, dans la province de Susquehanna en Pennsylvanie (Etats-Unis), une zone d’intérêt particulier pour le développement du gaz des schistes de Marcellus. Les ABB ont migré naturellement et préférentiellement vers les couches aquifères peu profondes le long d'une faille normale supposée et de certains linéaments topographiques de direction générale NNE–SSW, subparallèles au champ de contrainte régional de compression horizontale maximale (orienté NE–SW). Les données de gravité et de magnétisme apportent des éléments de confirmation des failles supposées et du contrôle structural des linéaments topographiques avec les signatures des ABB dominantes dans les eaux souterraines des aquifères peu profonds. Une perméabilité significative en profondeur, liée aux structures géologiques et à leur orientation selon les champs de contrainte régional, facilite probablement la migration verticale des fluides de l’ABB depuis la profondeur. On sait que des ABB existent actuellement dans les unités stratigraphiques de l’Ordovicien au Dévonien, mais elles proviennent probablement de couches du Silurien supérieur, ce qui suggère une migration significative à travers les temps géologiques, à la fois verticalement et transversalement. La présence naturelle d’eau souterraine de faible profondeur impactée par les ABB a des implications importantes pour différentier une contamination par des saumures provenant des forages de gaz, en plus d’exposer des voies verticales potentielles de migration pour des impacts de forage.

Evidencia y mecanismos para la migración de salmuera en la Cuenca Appalachian hacia acuíferos someros en el NE de Pensilvania, EEUU

Resumen

Múltiples conjuntos de datos de un sistema de información geográfica (GIS), incluyendo orientaciones de diaclasas de nueve afloramientos de basamento, fallas inferidas, lineamientos topográficos, datos geofísicos (por ejemplo gravedad regional, campos magnéticos y de tensiones), 290 muestras de agua subterránea de perforaciones previas de gas (datos de Cl–Br) y datos de Cl–Br de la salmuera de la cuenca Appalachian (ABB), fueron integrados para evaluar las fuentes de salinización en perforaciones previas de gas a través de Susquehanna County, Pennsylvania (EEUU), una zona focal del desarrollo de gas de Marcellus Shale. ABB ha migrado naturalmente y preferencialmente hacia los acuíferos someros a lo largo de una falla normal inferida y ciertos lineamientos topográficos de tendencia generalmente NNE–SSW, sub-paralelo con el máximo campo regional horizontal compresivo de tensiones (orientado NE–SW). Los datos de gravedad y magnéticos proveen evidencias de apoyo para las fallas inferidas y para el control estructural de los lineamientos topográficos con marcas de ABB dominantes en el agua subterránea somera. La permeabilidad significativa en profundidad, determinada por las estructuras geológicas y su orientación hacia el campo regional de tensiones, muy probablemente facilita la migración de fluidos ABB desde profundidad. Se conoce que el ABB existe comúnmente dentro de unidades estratigráficas del Ordovícico y a través de unidades Devónicas, pero probablemente se origina desde estrato del Silúrico superior, lo que sugiere una migración significativa a través del tiempo geológico, tanto verticalmente como lateralmente. La presencia natural en el agua subterránea somera impactada por ABB tiene importantes implicancias para diferenciar la contaminación por salmuera derivada de las perforaciones de gas, además de exponer las trayectorias de una potencial migración vertical para los impactos en las perforaciones de gas.

美国宾西法尼亚州东北部阿巴拉契亚流域卤水流入浅层含水层的证据和机理

摘要

结合多重地理信息系统数据集,包括九个基岩出露点的节理走向、推断的断层、地形轮廓、地球物理数据(如区域重力、地磁及应力场)、290个气体钻探前的水样(Cl–Br数据)及阿巴拉契亚流域卤水Cl–Br数据评价了(美国)宾西法尼亚州整个萨斯奎哈纳县气体钻探前盐化之源,这个地区是玛西拉页岩气开发的重点区域。阿巴拉契亚流域卤水自然而优先地运移到沿推断的正断层的浅层含水层,某些地形轮廓通常走向为NNE–SSW,近似平行于最大的区域横向抗压应力场(走向NE–SW)。重力和地磁数据为推断的断层和主要为阿巴拉契亚流域卤水浅层含水层特征的地形轮廓构造控制提供支持证据。地质构造及其到区域应力场的走向造成的深部显著的透水性可能促进深部的阿巴拉契亚流域卤水液体的垂直运移。已知阿巴拉契亚流域卤水目前存在于奥陶纪到泥盆纪的地层单元内,但是可能来源于晚志留纪地层,表明在漫长的地质年代中,垂直和侧向上都有很大的运移。自然存在的受到阿巴拉契亚流域卤水影响的浅层地下水除了可以暴露出气体钻探影响的潜在垂直运移通道外,还可以区分气体钻探导致的卤水污染。

Evidências e mecanismos para a migração de salmouras da Bacia dos Apalaches para aquíferos pouco profundos no NE da Pensilvânia, EUA

Resumo

Múltiplas bases de dados de sistemas de informação geográfica (SIG), incluindo orientações de fraturas de nove afloramentos do soco, falhas inferidas, lineamentos topográficos, dados geofísicos (e.g. campo gravítico, campo magnético e campo de tensões regionais), 290 amostras de água subterrânea anteriores às perfurações para produção de gás (dados de Cl–Br) e dados de Cl–Br da salmoura da Bacia dos Apalaches (ABB), foram integrados para avaliar fontes de salinização anteriores às perfurações destinadas à produção de gás em todo o Condado de Susquehanna, na Pensilvânia (EUA), uma área em foco no desenvolvimento do gás dos Xistos Marcellus. A ABB migrou natural e preferencialmente para os aquíferos pouco profundos ao longo de uma falha normal inferida e de certos lineamentos topográficos geralmente com orientação NNE–SSW, subparalelos à tensão compressiva horizontal regional máxima (orientada NE–SW). Dados gravimétricos e magnéticos fornecem elementos comprovativos da existência das falhas inferidas e do controlo estrutural dos lineamentos topográficos com água subterrânea a pequena profundidade com assinatura dominante da ABB. A permeabilidade significativa em profundidade, transmitida pelas estruturas geológicas e pela sua orientação em relação ao campo de tensões regional, facilita provavelmente a migração vertical de fluidos de ABB de profundidade. Sabe-se atualmente que a ABB ocorre nas unidades estratigráficas do Ordovícico até ao Devónico, mas que tem origem provável nos estratos do Silúrico Superior, sugerindo uma migração significativa ao longo do tempo geológico, tanto vertical como lateralmente. A presença natural de águas subterrâneas pouco profundas com influência da ABB tem implicações importantes na diferenciação da contaminação por salmoura derivada das perfurações para gás, para além de expor vias de migração vertical potenciais para impactes das perfurações de gás.

Notes

Acknowledgements

The author wishes to acknowledge Prof. Susan L Brantley, Prof. Arthur Rose, Dr. Anthony Gorody and others for their reviews and valuable feedback. The comments and suggestions of two anonymous reviewers are greatly appreciated and helped with the manuscript’s improvement. A special thanks goes to the private property owners who granted permission to use their baseline water-quality data for this study.

References

  1. Alexander S, Cakir R, Doden A, Gold D, Root S (2005) Basement depth and related geospatial database for Pennsylvania. Open-File General Geology Report 05–01.0, 4th ser. Pennsylvania Geol. Surv., Harrisburg, PAGoogle Scholar
  2. Aydogan D (2011) Extraction of lineaments from gravity anomaly maps using the gradient calculation: application to central Anatolia. Earth Planets Space 63:903–913CrossRefGoogle Scholar
  3. Bankey V, Cuevas A, Daniels D, Finn C, Hernandez I, Hill P, Kucks R, Miles W, Pilkington M, Roberts C, Roest W, Rystrom V, Shearer S, Snyder S, Sweeney R, Velez J, Phillips J, Ravat D (2002) Digital data grids for the magnetic anomaly map of North America. OFR 02–414, US Geological Survey, Denver, COGoogle Scholar
  4. Banwell G, Parizek R (1988) Helium 4 and radon 222 concentrations in groundwater and soil gas as indicators of zones of fracture concentration in unexposed rock. J Geophys Res 93(B1):355–366CrossRefGoogle Scholar
  5. Blakely R, Simpson R (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51(7):1494–1498CrossRefGoogle Scholar
  6. Blauch M, Myers R, Moore T, Lipinski B (2009) Marcellus Shale post-frac flowback waters: where is all the salt coming from and what are the implications? SPE Paper 125740, SPE, Eastern Regional Meeting, Charleston, W VA, September 23–25, 2009Google Scholar
  7. Bond D (1972) Hydrodynamics in deep aquifers of the Illinois basin. Illinois State Geol Surv Circ 470, 72 ppGoogle Scholar
  8. Boulton G, Caban P, van Gijssel K, Leijnse A, Punkari M, van Weert F (1996) The impact of glaciations on the groundwater regime of Northwest Europe. Glob Planet Chang 12:397–413. doi: 10.1016/0921-8181(95)00030-5 CrossRefGoogle Scholar
  9. Carter K (2007) Subsurface rock correlation diagram, oil and gas producing regions of Pennsylvania. Open-File Report OFOG 07–01.1, Pennsylvania Geol. Surv., Harrisburg, PAGoogle Scholar
  10. Cathcart S (1934) Geologic structure in the Plateaus region of northern Pennsylvania and its relation to the occurrence of gas in the Oriskany Sand. Pennsylvania Geol Surv Bull 108Google Scholar
  11. Davis S, Whittemore D, Fabryka-Martin J (1998) Use of chloride/bromide ratios in studies of potable water. Ground Water 36(2):338–350CrossRefGoogle Scholar
  12. Dresel P (1985) The geochemistry of oilfield brines from western Pennsylvania. MSc Thesis, Pennsylvania State Univ., USAGoogle Scholar
  13. Dresel P, Rose A (2010) Chemistry and origin of oil and gas well brines in western Pennsylvania. Open-File Report OFOG 10–01.0, 4th ser. Pennsylvania Geol. Surv., Harrisburg, PA, 48 ppGoogle Scholar
  14. Edmonds C (2004) Natural gas exploration associated with fracture systems in Alleghenian thrust faults in the Greenbrier Formation, southern West Virginia. MSc Thesis, West Virginia University, Morgantown, USA, 94 ppGoogle Scholar
  15. Engelder T, Lash G, Uzcategui R (2009) Joint sets that enhance production from Middle and Upper Devonian gas shales of the Appalachian Basin. AAPG Bull 93(7):857–889CrossRefGoogle Scholar
  16. Faill R (2011) Folds of Pennsylvania: GIS data and map. PA Geol Surv, 4th ser. Open-File Report OFGG 11–01.0, scale 1:500,000, Pennsylvania Geol. Surv., Harrisburg, PAGoogle Scholar
  17. Ferguson H, Hamel J (1981) Valley stress relief in flat-lying sedimentary rocks. Proceedings of the International Symposium on Weak Rock, Tokyo, September 1981, pp 1235–1240Google Scholar
  18. Fergusson W, Prather B (1968) Salt deposits in the Salina Group in Pennsylvania, Mineral Resources Report M 58, Pennsylvania Geol Surv, Harrisburg, PA, 47 ppGoogle Scholar
  19. Freeman J (2007) The use of bromide and chloride mass ratios to differentiate salt-dissolution and formation brines in shallow groundwaters of the western Canadian sedimentary basin. Hydrogeol J 15:1377–1385. doi: 10.1007/s10040-007-0201-1 CrossRefGoogle Scholar
  20. Granato G (1996) Deicing chemicals as a source of constituents in highway runoff. Transportation Research Record 1533, Transportation Research Board. National Research Council, Washington, DC, pp 50–58Google Scholar
  21. Grasby S, Betcher R (2002) Regional hydrogeochemistry of the carbonate rock aquifer, southern Manitoba. Can J Earth Sci 39:1053–1063. doi: 10.1139/E02-021 CrossRefGoogle Scholar
  22. Grasby S, Chen Z (2005) Subglacial recharge into the Western Canada Sedimentary Basin: impact of Pleistocene glaciations on basin hydrodynamics. Geol Soc Am Bull 117(3–4):500–514. doi: 10.1130/B25571.1 CrossRefGoogle Scholar
  23. Grasby S, Osadetz K, Betcher R, Render F (2000) Reversal of the regional-scale flow system of the Williston basin in response to Pleistocene glaciations. Geology 28(7):635–638. doi: 10.1130/0091-7613(2000)28<635:ROTRFS>2.0.CO;2 CrossRefGoogle Scholar
  24. Haluszczak L, Rose A, Kump L (2012) Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA. Appl Geochem. doi: 10.1016/j.apgeochem.2012.10.002 Google Scholar
  25. Haneberg W (2000) Influence of valley form on the subsurface state of stress: application of simple elastic models to understand modes of Appalachian coal mine rock failure. Proceedings of the Fourth North American Rock Mechanics Symposium, Balkema, Rotterdam, The Netherlands, pp 873–879Google Scholar
  26. Hansen R, deRidder E (2006) Linear feature analysis for aeromagnetic data. Geophysics 71(6):L61–L67CrossRefGoogle Scholar
  27. Harper J (1989) Effects of recurrent tectonic patterns on the occurrence and development of oil and gas resources in western Pennsylvania. Northeast Geol 11:225–245Google Scholar
  28. Hayes T (2009) Sampling and analysis of water streams associated with the development of Marcellus shale gas. Report for the Marcellus Shale Coalition, Gas Technology Institute, Des Plaines, ILGoogle Scholar
  29. Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeb D, Muller B (2008) The world stress map database release 2008. doi: 10.1594/GFZ.WSM.Rel2008
  30. Henriksen H, Braathen A (2006) Effects of fracture lineaments and in-situ rock stresses on groundwater flow in hard rocks: a case study from Sunnfjord, western Norway. Hydrogeol J 14:444–461. doi: 10.1007/s10040-005-0444-7 CrossRefGoogle Scholar
  31. Hobbs W (1904) Lineaments of the Atlantic border region. Geol Soc Am Bull 15:483–506Google Scholar
  32. Jacobi R (2002) Basement faults and seismicity in the Appalachian Basin of New York State. Tectonophysics 353:75–113CrossRefGoogle Scholar
  33. Jenness J (2006) Topographic position index extension for ArcGIS 9.3. Jenness Enterprises. Available via http://www.jennessent.com/arcview/tpi.htm. Accessed 6 Nov 2012
  34. Kelley D, DeBor D, Malanchak J, Anderson D (1973) Subsurface brine analyses of Pennsylvania from deep formations. Open-File Report OFR 73–02, 4th ser., Pennsylvania Geol. Surv., Harrisburg, PA, 2 platesGoogle Scholar
  35. Kipp J, Dinger J (1987) Stress-relief fracture control of ground-water movement in the Appalachian Plateaus, Proceedings of the Fourth Annual Eastern Regional Ground Water Conference, Focus on Eastern Regional Ground Water Issues. National Water Well Association, Burlington, VT, pp 423–438Google Scholar
  36. Knuth M, Jackson J, Whittemore D (1990) An integrated approach to identifying the salinity source contaminating a ground-water supply. Ground Water 28(2):207–214CrossRefGoogle Scholar
  37. Kowalik W, Gold D (1974) The use of LANDSAT-1 imagery in mapping lineaments in Pennsylvania. First International Conference on the New Basement Tectonics. Publ. no. 5, Utah Geol Association, Salt Lake City, UTGoogle Scholar
  38. Kucks R (1999) Bouguer gravity anomaly data grid for the conterminous US. Compiled from: Phillips J, Duval J, Ambroziak R (1993) National geophysical data grids; gamma-ray, gravity, magnetic and topographic data for the conterminous United States. DDS-9, US Geological Survey, Washington, DCGoogle Scholar
  39. Lattman L (1958) Techniques of mapping geologic fracture traces and lineaments on aerial photographs. Photogramm Eng 24:568–576Google Scholar
  40. Lemieux J, Sudicky E (2010) Simulation of groundwater age evolution during the Wisconsinian glaciations over the Canadian Landscape. Environ Fluid Mech 10:91–102. doi: 10.1007/s10652-009-9142-7 CrossRefGoogle Scholar
  41. Lemieux J, Sudicky E, Peltier W, Tarasov L (2008a) Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciations. J Geophys Res 113, F01011. doi: 10.1029/2007/JF000838 Google Scholar
  42. Lemieux J, Sudicky E, Peltier W, Tarasov L (2008b) Simulating the impact of glaciations on continental groundwater flow systems: 1. relevant processes and model formulation. J Geophys Res 113, F03017Google Scholar
  43. Lemieux J, Sudicky E, Peltier W, Tarasov L (2008c) Simulating the impact of glaciations on continental groundwater flow systems: 2. model application to the Wisconsinian glaciation over the Canadian landscape. J Geophys Res 113, F03018Google Scholar
  44. Llewellyn G (2011) Structural and topographic assessment of shallow bedrock permeability variations throughout Susquehanna County, PA: a focus area of Marcellus Shale gas development. Abstr Programs Geol Soc Am 43:567Google Scholar
  45. Mabee S, Curry P, Hardcastle K (2002) Correlation of lineaments to ground water inflows in a bedrock tunnel. Ground Water 40(1):37–43CrossRefGoogle Scholar
  46. Magowe M, Carr J (1999) Relationship between lineaments and ground water occurrence in western Botswana. Ground Water 37(2):282–286CrossRefGoogle Scholar
  47. McIntosh J, Schlegel M, Person M (2012) Glacial impacts on hydrologic processes in sedimentary basins: evidence from natural tracer studies. Geofluids 12:7–21. doi: 10.1111/j.1468-8123.2011.00344.x CrossRefGoogle Scholar
  48. Miles C, Whitfield T (2001) Bedrock geology of Pennsylvania, 4th ser., GIS dataset, Pennsylvania Geol. Surv., Harrisburg, PA Google Scholar
  49. Molofsky L, Connor J, Wylie A, Wagner T, Farhat S (2013) Evaluation of methane sources in groundwater in northeastern Pennsylvania. Ground Water 51(3):333–349Google Scholar
  50. Mullaney J, Lorenz D, Arntson A (2009) Chloride in groundwater and surface water in areas underlain by the Glacial Aquifer System, northern United States. US Geol Surv Sci Invest Rep 2009-5086, 41 ppGoogle Scholar
  51. Neuzil C (2012) Hydromechanical effects of continental glaciations on groundwater systems. Geofluids 12:22–37. doi: 10.1111/j.1468-8123.2011.00347.x CrossRefGoogle Scholar
  52. O’Leary D, Friedman J, Pohn H (1976) Lineament, linear, lineation: some proposed new standards for old terms. Geol Soc Am Bull 87:1463–1469CrossRefGoogle Scholar
  53. Osborn S, McIntosh J (2010) Chemical and isotopic tracers of the contribution of microbial gas in Devonian organic-rich shales and reservoir sandstones, northern Appalachian Basin. Appl Geochem 25:456–471CrossRefGoogle Scholar
  54. Owen R, Maziti A, Dahlin T (2007) The relationship between regional stress field, fracture orientation and depth of weathering and implications for groundwater prospecting in crystalline rocks. Hydrogeol J 15:1231–1238CrossRefGoogle Scholar
  55. Panno S, Hackley K, Hwang H, Greenberg S, Krapac I, Landsberger S, O’Kelly D (2006) Characterization and identification of Na–Cl sources in ground water. Ground Water 44(2):176–187CrossRefGoogle Scholar
  56. Pascal C, Roberts D, Gabrielsen R (2010) Tectonic significance of present-day stress relief phenomena in formerly glaciated regions. J Geol Soc Lond 167:363–371. doi: 10.1144/0016-76492009-136 CrossRefGoogle Scholar
  57. Pennsylvania Department of Environmental Protection (PDEE) (2010) Frac and flowback water analyses. Right-to-Know request, provided February 1, 2010, PDEE, Harrisburg, PAGoogle Scholar
  58. Pennsylvania Department of Environmental Protection (PDEE) (2011) Chemical characterization of Marcellus Shale fracturing flowback and drill cuttings. Internal report, PDEE, Harrisburg, PAGoogle Scholar
  59. Person M, Bense V, Cohen D, Banerjee A (2012) Models of ice-sheet hydrogeologic interactions: a review. Geofluids 12:58–78. doi: 10.1111/j.1468-8123.2011.00360.x CrossRefGoogle Scholar
  60. Person M, McIntosh J, Bense V, Remenda V (2007) Pleistocene hydrology on North America: the role of ice sheets in reorganizing groundwater flow systems. Rev Geophys 45, RG3007/2007Google Scholar
  61. Piotrowski J (1997a) Subglacial hydrology in northwestern Germany during the last glaciations: groundwater flow, tunnel valleys and hydrological cycles. Quat Sci Rev 16:169–185. doi: 10.1016/S0277-3791(96)00046-7 CrossRefGoogle Scholar
  62. Piotrowski J (1997b) Subglacial groundwater flow during the last glaciations in northwestern Germany. Sediment Geol 111:217–224. doi: 10.1016/S0037-0738(97)00002-X CrossRefGoogle Scholar
  63. Poth C (1962) The occurrence of brine in western Pennsylvania. Bulletin M 47, 4th ser, Pennsylvania Geol. Surv., Harrisburg, PA, 53 ppGoogle Scholar
  64. Richter B, Kreitler C (1991) Identification of sources of ground-water salinization using geochemical techniques. EPA/600/2-91/064, US EPA, Washington, DC, 259 ppGoogle Scholar
  65. Rittenhouse G (1967) Bromine in oil-field waters and its use in determining possibilities of origin of these waters. AAPG Bull 51(12):2430–2440Google Scholar
  66. Rogers S, Evans C (2002) Stress-dependent flow in fractured rocks at Sellafield, United Kingdom. In: Lovell N, Parkinson N (eds) Geological applications of well logs. Methods in Exploration Series no. 13, AAPG, Tulsa, OK, pp 241–250Google Scholar
  67. Sander P (2007) Lineaments in groundwater exploration: a review of applications and limitations. Hydrogeol J 15:71–74CrossRefGoogle Scholar
  68. Siegel D (1991) Evidence for dilution of deep, confined groundwater by vertical recharge of isotopically heavy Pleistocene water. Geology 19:433–436. doi: 10.1130/0091-7613(1991)0192.3.CO;2 CrossRefGoogle Scholar
  69. Siegel D, Mandle R (1984) Isotopic evidence for glacial meltwater recharge to the Cambrian-Ordovician aquifer, north-central United States. Quat Res 22:328–335CrossRefGoogle Scholar
  70. Songer N, Ewers R (1987) Seepage velocities in stress-relief fractures in the eastern Kentucky coal field. MOA 006131, Kentucky Division of Water, Ground Water Section, Frankfort, KY, pp 565–583Google Scholar
  71. Stoessell R, Prochaska L (2005) Chemical evidence for migration of deep formation fluids into shallow aquifers in south Louisiana. Gulf Coast Assoc Geol Soc Trans 55:794–808Google Scholar
  72. Talbot C, Sirat M (2001) Stress control of hydraulic conductivity in fracture-saturated Swedish bedrock. Eng Geol 61:145–153CrossRefGoogle Scholar
  73. Taylor L (1984) Groundwater resources of the Upper Susquehanna River Basin, Pennsylvania. Water Resource Report 58, 4th ser, Pennsylvania Geol. Surv., Harrisburg, PA, 136 ppGoogle Scholar
  74. Tesmer M, Moller P, Wieland S, Jahnke C, Voight H, Pekdeger A (2007) Deep reaching fluid flow in the North East German basin: origin and processes of groundwater salinisation. Hydrogeol J 15:1291–1306. doi: 10.1007/s10040-007-0176-y CrossRefGoogle Scholar
  75. Warner N, Jackson R, Darrah T, Osborn S, Down A, Zhao K, White A, Vengosh A (2012) Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. PNAS. doi: 10.1073/pnas.1121181109 Google Scholar
  76. Weiss A (2001) Topographic position and landforms analysis. ESRI User Conference, ESRI, San DiegoGoogle Scholar
  77. Whittemore D (1995) Geochemical differentiation of oil and gas brine from other saltwater sources contaminating water resources: case studies from Kansas and Oklahoma. Environ Geosci 2(1):15–31Google Scholar
  78. Williams J, Taylor L, Low D (1998) Hydrogeology and groundwater quality of the glaciated valleys of Bradford, Tioga, and Potter counties, Pennsylvania. Water Resource Report 68, 4th ser, Pennsylvania Geol. Surv., Harrisburg, PA, 89 ppGoogle Scholar
  79. Wyrick G, Borchers J (1981) Hydrologic effects of stress-relief fracturing in an Appalachian valley. US Geol Surv Water-Suppl Pap 2177, 53 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Appalachia Hydrogeologic and Environmental Consulting, LLCBridgewaterUSA

Personalised recommendations