Advertisement

Hydrogeology Journal

, Volume 22, Issue 5, pp 1027–1039 | Cite as

Combined use of natural and artificial tracers to determine the hydrogeological functioning of a karst aquifer: the Villanueva del Rosario system (Andalusia, southern Spain)

  • M. Mudarra
  • B. Andreo
  • A. I. Marín
  • I. Vadillo
  • J. A. Barberá
Paper

Abstract

Analysis of natural responses of karst springs provides information on the behavior of the aquifers they drain. Detailed monitoring and qualitative and quantitative analyses of natural responses, and environmental—total organic carbon (TOC), NO3 , Cl and intrinsic fluorescence—and artificial (fluorescent dye) tracers, in the water drained by Villanueva del Rosario spring (southern Spain), suggest the existence of a conduit flow system with rapid flows and very short transit times of water through the aquifer. This is in agreement with uranine and eosin breakthrough curves and with simple numerical models done using these data. However, due to the low capacity for natural regulation, not all the recharge effects are simultaneously transmitted to the spring water; given a single input, the system modulates and transfers hydrodynamic variations faster than variations of chemical composition and of water temperature. Additionally, time lags between maximum concentrations of natural and artificial tracers show that the global system response (including diffuse infiltration) is faster and more sensitive than that produced from infiltration concentrated at a single point on the surface (sinkholes).

Keywords

Carbonate aquifer Tracers Natural responses Infiltration processes Spain 

Utilisation combine des traceurs naturels et artificiels pour déterminer le fonctionnement hydrogéologique d’un aquifère karstique: le système de Villanueva de Rosario (Andalousie, Sud de l’Espagne)

Résumé

L’analyse des réponses naturelles des sources karstiques fournissent une information sur le comportement des aquifères qu’elles drainent. Un suivi détaillé et des analyses qualitatives et quantitatives des réponses naturelles, et des traceurs environnementaux—carbone organique total (COT), NO3 , Cl et fluorescence intrinsèque—et artificiels (colorants fluorescents), dans l’eau drainée par la source de Villanueva del Rosario (Sud de l’Espagne), suggère l’existence d’un système d’écoulement dominé par des conduits avec des écoulements rapides et des temps de transit très courts de l’eau au sein de l’aquifère. Ceci est en accord avec les courbes de restitution de l’uranine et de l’éosine et avec des modèles numériques simples utilisant ces données. Cependant, à cause de la faible capacité de régulation naturelle, tous les effets de la recharge ne sont pas transmis simultanément à la source, considérant une contribution unique, le système module et transfère les variations hydrodynamiques plus vite que les variations de la composition chimique et de la température de l’eau. De plus, les décalages dans le temps entre les concentrations maximums des traceurs naturels et artificiels montrent que la réponse globale du système (y compris l’infiltration diffuse) est plus rapide et beaucoup plus sensible que celle produite par l’infiltration concentrée au niveau d’un point singulier d’introduction en surface (pertes).

El uso combinado de trazadores naturales y artificiales para determinar el funcionamiento hidrogeológico de un acuífero kárstico: El sistema de Villanueva del Rosario (Andalucía, sur de España)

Resumen

El análisis de las respuestas naturales de manantiales kársticos informa sobre del comportamiento de los acuíferos que drenan. El muestreo detallado y los análisis cualitativos y cuantitativos de las respuestas naturales, y los trazadores ambientales—carbono orgánico total (TOC), NO3 , Cl y fluorescencia natural—y artificiales (colorantes fluorescentes), en el agua drenada por el manantial de Villanueva del Rosario (sur de España), sugiere la existencia de un sistema de conductos con flujos rápidos y tiempos de tránsito del agua muy cortos a través del acuífero. Esto está de acuerdo con las curvas de concentración de la uranina y la eosina y con los modelos numéricos simples realizados usando estos datos. Sin embargo, debido a la baja capacidad de regulación natural, no todos los efectos de la recarga son transmitidos simultáneamente al agua del manantial; ante una entrada, el sistema modula y transfiere las variaciones hidrodinámicas más rápidamente que las variaciones en la composición química y en la temperatura del agua. Adicionalmente, los retardos temporales entre las concentraciones máximas de trazadores naturales y artificiales muestran que la respuesta global del sistema (incluyendo la infiltración difusa) es más rápida y más sensible que aquella producida a partir de la infiltración concentrada en un solo punto en la superficie (sumidero kárstico).

联合应用天然和人工示踪剂确定岩溶含水层的水文地质功能:(西班牙南部安达卢西亚)Villanueva del Rosario系统

摘要

岩溶泉自然反应分析提供了其含水层的行为信息。(西班牙南部)Villanueva del Rosario泉自然反应的详细监测及定量和定性分析、水中的环境(总有机碳(TOC)、 NO3 、 Cl 及内荧光)及人工(荧光染料)示踪剂显示存在着通过含水层的快速流动管道水流系统及很短的过渡时间。这与荧光素钠和曙红突破曲线一致,也与用这些数据做的简单数值模型一致。然而,由于自然调节能力很低,并不是所有的补给影响同时传到泉水;考虑到单一的输入项,系统调整和传输水文动力变化的速度比化学组分和水温变化要快。另外,天然和人工示踪剂最大含量之间的时滞显示,全球系统反应(包括弥散渗入)比集中在地表一个点(落水洞)产生的渗入更快、更敏感。

O uso combinado de traçadores naturais e artificiais para determinar o funcionamento hidrogeológico de um aquífero cársico: o sistema de Villanueva del Rosario (Andaluzia, sul da Espanha)

Resumo

A análise das respostas naturais de nascentes cársicas fornece informações sobre o comportamento dos aquíferos que drenam. A monitorização detalhada realizada, bem como os resultados de análises qualitativas e quantitativas das respostas naturais e ambientais—carbono orgânico total (COT), NO3 , Cl rescência intrínseca—e com traçadores artificiais (corante fluorescente) na água drenada pela nascente de Villanueva del Rosario (sul de Espanha), sugerem a existência de um sistema de escoamento da água no aquífero efetuado por condutas com fluxos rápidos e tempos de percurso muito baixos. Esta análise está de acordo com os dados obtidos com curvas de traçadores de uranina e de eosina, e com modelos numéricos simples feitos usando esses dados. No entanto, devido à baixa capacidade de regulação natural, nem todos os processos de recarga são transmitidos simultaneamente à água de nascente; considerando uma única entrada, o sistema modela e transfere variações hidrodinâmicas mais rapidamente do que as variações da composição química e da temperatura da água. Além disso, os lapsos de tempo entre as concentrações máximas de marcadores naturais e artificiais mostram que a resposta do sistema global (incluindo infiltração difusa) é mais rápida e mais sensível do que a produzida a partir de infiltração concentrada num único ponto na superfície (algar).

Notes

Acknowledgements

This work is a contribution to the projects CGL2008-06158 and CGL-2012-32590 of DGICYT and IGCP 598 of UNESCO, and to the Research Group RNM-308 of the Junta de Andalucía. The authors thank two anonymous reviewers for their constructive criticisms which contributed to improving the original version of the manuscript. Improvements and suggestions done by Dr. Ate Visser as associated editor are also much appreciated.

References

  1. Andreo B, Goldscheider N, Vadillo I, Vías JM, Neukum C, Sinreich M, Jiménez P, Brechenmacher J, Carrasco F, Hötzl H, Perles JM, Zwahlen F (2006) Karst groundwater protection: first application of a Pan-European approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (southern Spain). Sci Total Environ 357:54–73. doi: 10.1016/j.scitotenv.2005.05.019 CrossRefGoogle Scholar
  2. Auckenthaler A, Raso G, Huggenberger P (2002) Particle transport in a karst aquifer: natural and artificial tracer experiments with bacteria, bacteriophages and microspheres. Water Sci Technol 46(3):131–138Google Scholar
  3. Baker A, Genty D (1999) Fluorescence wavelength and intensity variations of cave waters. J Hydrol 217:19–34CrossRefGoogle Scholar
  4. Batiot C, Liñán C, Andreo B, Emblanch C, Carrasco F, Blavoux B (2003) Use of TOC as tracer of diffuse infiltration in a dolomitic karst system: the Nerja Cave (Andalusia, southern Spain). Geophys Res Lett 30(22):2179. doi: 10.1029/2003GL018546 CrossRefGoogle Scholar
  5. Benischke R, Goldscheider N, Smart C (2007) Tracer techniques. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. Taylor and Francis, LondonGoogle Scholar
  6. Birk S, Liedl R, Sauter M (2004) Identification of localized recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany). J Hydrol 286:179–193. doi: 10.1016/j.jhydrol.2003.09.007 CrossRefGoogle Scholar
  7. Caetano-Bicalho C, Batiot-Guilhe C, Seidel JL, Van Exter S, Jourde H (2012) Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer. J Hydrol 450–451:206–218. doi: 10.1016/j.jhydrol.2012.04.059 CrossRefGoogle Scholar
  8. Celle-Jeanton H, Emblanch C, Mudry J, Charmoille A (2003) Contribution of time tracers (Mg2+, TOC, δ13CTDIC, NO3 ) to understand the role of the unsaturated zone: a case study—karst aquifers in the Doubs valley, eastern France. Geophys Res Lett 30(6):1322. doi: 10.1029/2002GL016781 CrossRefGoogle Scholar
  9. Charlier JB, Bertrand C, Mudry J (2012) Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system. J Hydrol 460–461:52–64. doi: 10.1016/j.jhydrol.2012.06.043 CrossRefGoogle Scholar
  10. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51(4):325–346CrossRefGoogle Scholar
  11. Covington MD, Luhmann AJ, Gabrovsek F, Saar MO, Wicks CM (2011) Mechanisms of heat exchange between water and rock in karst conduits. Water Resour Res 47, W10514. doi: 10.1029/2011WR010683 CrossRefGoogle Scholar
  12. Desmarais K, Rojstaczer S (2002) Inferring source waters from measurements of carbonate spring response to storms. J Hydrol 260:118–134. doi: 10.1016/S0022-1694(01)00607-2 CrossRefGoogle Scholar
  13. Einsiedl F (2005) Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers. J Hydrol 312:312–321. doi: 10.1016/j.jhydrol.2005.03.031 CrossRefGoogle Scholar
  14. Emblanch C, Blavoux B, Puig JM, Mudry J (1998) Dissolved organic carbon of infiltration within the autogenic karst hydrosystem. Geophys Res Lett 25:1459–1462. doi: 10.1029/98GL01056 CrossRefGoogle Scholar
  15. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UKCrossRefGoogle Scholar
  16. Geyer T, Birk S, Licha T, Liedl R, Sauter M (2007) Multitracer test approach to characterize reactive transport in karst aquifers. Ground Water 45(1):36–45. doi: 10.1111/j.1745-6584.2006.00261.x CrossRefGoogle Scholar
  17. Goldscheider N (2008) A new quantitative interpretation of the long-tail and plateau-like breakthrough curves from tracer tests in the artesian karst aquifer of Stuttgart, Germany. Hydrogeol J 16(7):1311–1317. doi: 10.1007/s10040-008-0307-0 CrossRefGoogle Scholar
  18. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor and Francis, LondonGoogle Scholar
  19. Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer tests in karst hydrogeology and speleology. Int J Spel 37(1):27–40CrossRefGoogle Scholar
  20. Hunkeler D, Mudry J (2007) Hydrochemical methods. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. Taylor and Francis, LondonGoogle Scholar
  21. Käss W (1998) Tracing technique in geohydrology. Balkema, Rotterdam, The NetherlandsGoogle Scholar
  22. Lastennet R (1994) Role of unsaturated zone in the functioning of karst aquifers: approach for the physico–chemical and isotopic study of input and output (springs) of Ventoux massif (Vaucluse). PhD Thesis, University of Avignon and Pays de Vaucluse, Avignon, FranceGoogle Scholar
  23. Lastennet R, Mudry J (1997) Role of karstification and rainfall in the behavior of a heterogeneous karst system. Environ Geol 32:114–123CrossRefGoogle Scholar
  24. Lawaetz AJ, Stedmon CA (2009) Fluorescence intensity calibration using the Raman scatter peak of water. Appl Spectrosc 63(8):936–940CrossRefGoogle Scholar
  25. Luhmann AJ, Covington MD, Alexander SC, Chai SY, Schwartz BF, Groten JT, Alexander EC Jr (2012) Comparing conservative and non-conservative tracers in karst and using them to estimate flow path geometry. J Hydrol 448–449:201–211. doi: 10.1016/j.jhydrol.2012.04.044 CrossRefGoogle Scholar
  26. Mangin A (1984) Pour une meillure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale [The use of autocorrelation and spectral analyses to obtain a better understanding of hydrological systems]. J Hydrol 67:25–43CrossRefGoogle Scholar
  27. Martín-Algarra M (1987) Evolución geológica alpina del contacto entre las Zonas Internas y Externas de la Cordillera Bética [Geological alpine evolution of the tectonic contact between the Internal and External Zones of Betic Cordillera]. PhD Thesis, University of Granada, GranadaGoogle Scholar
  28. Massei NH, Wang Q, Field MS, Dupont JP, Bakalowicz M, Rodet J (2006) Interpreting tracer breakthrough tailing in a conduit-dominated karst aquifer. Hydrogeol J 14(6):849–858. doi: 10.1007/s10040-005-0010-3 CrossRefGoogle Scholar
  29. Morales T, Uriarte JA, Olazar M, Antigüedad I, Angulo B (2010) Solute transport modelling in karst conduits with slow zones during different hydrologic conditions. J Hydrol 390:182–189. doi: 10.1016/j.jhydrol.2010.06.041 CrossRefGoogle Scholar
  30. Mudarra M (2012) Importancia relativa de la zona no saturada y zona saturada en el funcionamiento hidrogeológico de los acuíferos carbonáticos: caso de la Alta Cadena, sierra de Enmedio y área de Los Tajos (provincia de Málaga) [Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of carbonate aquifers: the case of Alta Cadena, Sierra de Enmedio and Los Tajos area (province of Malaga, Southern Spain)]. PhD Thesis, University of Malaga, Malaga, SpainGoogle Scholar
  31. Mudarra M, Andreo B (2011) Relative importance of the saturated and the unsaturated zone sin the hydrogeological functioning of karst aquifers: the case of Alta Cadena (southern Spain). J Hydrol 397(3–4):263–280. doi: 10.1016/j.jhydrol.2010.12.005 CrossRefGoogle Scholar
  32. Mudarra M, Marín AI, Andreo B, Vadillo I, Barberá JA, Neukum C, Sánchez-García D, Liñán C, Pérez-Ramos I (2010) Investigación del funcionamiento hidrogeológico del acuífero carbonatado drenado por el manantial de Villanueva del Rosario (Alta Cadena, Málaga) a partir de un ensayo de trazadores [Study of the hydrogeological functioning of the carbonate aquifer drained by the Villanueva del Rosario spring (Alta Cadena mountain range, Malaga province, Spain) from a tracer test]. Geogaceta 48:131–134Google Scholar
  33. Mudarra M, Andreo B, Baker A (2011) Characterization of dissolved organic matter in karst spring waters using intrinsic fluorescence: relationship with infiltration processes. Sci Total Environ 409(18):3448–3462. doi: 10.1016/j.scitotenv.2011.05.026 CrossRefGoogle Scholar
  34. Mudarra M, Andreo B, Barberá JA, Mudry J (2014) Hydrochemical dynamics of TOC and NO3 contents as natural tracers of infiltration in karst aquifers. Environ Earth Sci 71(2):507–523. doi: 10.1007/s12665-013-2593-7 CrossRefGoogle Scholar
  35. Perrin J, Jeannin PY, Cornaton F (2007) The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland. J Hydrol 332:158–173. doi: 10.1016/j.jhydrol.2006.06.027 CrossRefGoogle Scholar
  36. Peyre Y (1974) Géologie d’Antequera et de sa région (Cordillères Bétiques, Espagne) [Geology of the Antequera region (Betic Cordillera, Spain)]. PhD Thesis, University of Paris, Inst Nat Agronomique, Paris, FranceGoogle Scholar
  37. Pronk M, Goldscheider N, Zopfi J, Zwahlen F (2009) Percolation and particle transport in the unsaturated zone of a karst aquifer. Ground Water 47(3):361–369. doi: 10.1111/j.1745-6584.2008.00509.x CrossRefGoogle Scholar
  38. Ravbar N, Barberá JA, Petrič M, Kogovsěk J, Andreo B (2012) The study of hydrodynamic behaviour of a complex karst system under low-flow conditions using natural and artificial tracers (the catchment of the Unica River, SW Slovenia). Environ Earth Sci 65:2259–2272. doi: 10.1007/s12665-012-1523-4 CrossRefGoogle Scholar
  39. Schröter J (1984) Micro- und Makro dispersivität poröser Grundwasserleiter [Micro- and macrodispersivity of porous aquifers]. Meyniana 36:1–34Google Scholar
  40. Senesi N, Miano TM, Provenzano MR, Brunett G (1991) Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci 152:259–271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Mudarra
    • 1
    • 2
  • B. Andreo
    • 1
  • A. I. Marín
    • 1
    • 3
  • I. Vadillo
    • 1
  • J. A. Barberá
    • 1
  1. 1.Department of Geology and Centre of Hydrogeology (CEHIUMA)University of MalagaMalagaSpain
  2. 2.Department of Civil Engineering and SurveyingUniversity of Puerto RicoMayaguezPuerto Rico
  3. 3.European Topic Centre for Spatial information and Analysis (ETCSIA-UMA)University of MalagaMalagaSpain

Personalised recommendations