Hydrogeology Journal

, Volume 22, Issue 6, pp 1329–1343 | Cite as

Improved hydrograph prediction through subsurface characterization: conditional stochastic hillslope simulations

  • Steven B. Meyerhoff
  • Reed M. Maxwell
  • Wendy D. Graham
  • John L. WilliamsIII
Paper

Abstract

Subsurface heterogeneity is one of the largest sources of uncertainty associated with saturated hydraulic conductivity. Recent work has demonstrated that uncertainty in hydraulic conductivity can impart significant uncertainty in runoff generation processes and surface-water flow. Here, the role of site characterization in reducing hydrograph prediction bias and uncertainty is demonstrated. A fully integrated hydrologic model is used to conduct two sets of stochastic, transient simulation experiments comprising different overland flow mechanisms: Dunne and Hortonian. Conditioning hydraulic conductivity fields using values drawn from a simulated synthetic control case are shown to reduce both mean bias and variance in an ensemble of conditional hydrograph predictions when compared with the control case. The ensemble simulations show a greater reduction in uncertainty in the hydrographs for Hortonian flow. The conditional simulations predict surface ponding and surface pressure distributions with reduced mean error and reduced root mean square error compared with unconditional simulations. Uncertainty reduction in Hortonian and Dunne flow cases demonstrates different temporal signals, with more substantial reduction achieved for Hortonian flow.

Keywords

Rainfall-runoff Groundwater/surface-water relations Numerical modeling 

Amélioration de la prévision hydrographique par caractérisation de la sub-surface: simulations stochastique conditionnelle des pentes de versant

Résumé

L’hétérogénéité de subsurface est l’une des plus grandes sources d’incertitude associée à la conductivité hydraulique saturée. Un travail récent a démontré que l’incertitude sur la conductivité hydraulique peut introduire une imprécision significative dans les processus de genèse du ruissellement et du flux d’eau de surface. On démontre ici le rôle des caractéristiques du site dans la réduction du biais et de l’incertitude de prévision hydrographique. Un modèle hydrologique entièrement intégré est utilisé pour mener deux ensembles de simulations expérimentales stochastique en domaine transitoire comprenant divers mécanismes d’écoulement superficiel: écoulements de Dunne et hortonien. Les domaines de conductivité hydraulique cadre caractérisés par des valeurs issues d’un cas de contrôle synthétique simulé sont présentés pour réduire à la fois le biais et la variance d’un ensemble de prévisions hydrographiques comparativement au référentiel. L’ensemble des simulations montre une plus grande réduction de l’incertitude dans les hydrogrammes pour le flot hortonien. Les simulations prédisent la rétention et les distributions de pression superficielles avec des erreurs moyenne et quadratique réduites comparativement aux simulations inconditionnelles. La réduction de l’incertitude dans les cas d’écoulements de Dunne et hortonien montrent différents signaux temporels, avec une réduction plus sensible dans le cas de l’écoulement hortonien.

Predicción mejorada de un hidrograma a través de la caracterización del subsuelo: simulaciones estocásticas condicionales de las laderas

Resumen

La heterogeneidad del subsuelo es una de las mayores fuentes de incertidumbres asociadas con la conductividad hidráulica saturada. Trabajos recientes han demostrado que la incertidumbre en la conductividad hidráulica puede transmitir una incertidumbre significativa en los procesos de generación de escurrimientos y del flujo de agua en superficie. Aquí, se demuestra el rol de la caracterización del sitio para reducir el sesgo en la predicción de hidrogramas y de la incertidumbre. Se usó modelo hidrológico totalmente integrado para llevar a cabo dos conjuntos de experimentos de simulación transitoria estocástica, que comprenden dos diferentes mecanismos de flujo en superficie: Dunne and Hortoniano. Se demuestra que los condicionantes de los campos de la conductividad hidráulica usando valores extraídos de casos de control sintéticos simulados reducen tanto la varianza como el sesgo medio en un conjunto de predicciones condicionales de hidrogramas cuando se los compara con el caso de control. Las simulaciones del conjunto muestran una reducción más grande en las incertidumbres en los hidrogramas para el flujo hortoniano. Las simulaciones condicionales predicen que para las distribuciones de los cuerpos de agua de superficie y de las presiones en superficie un error medio reducido y un error cuadrático medio reducido comparado con las simulaciones incondicionales. La reducción de las incertidumbres en los casos del flujo hortoniano y de Dunne demuestra diferentes señales temporales, con una más sustancial reducción alcanzada para el flujo Hortoniano.

通过地下特征描述改进水位曲线预测:有条件的随机山坡模拟

摘要

地表以下的非均匀性是与饱和水力传导率相关的最大不确定源之一。最近的研究工作显示,水力传导率的不确定性可导致径流产生过程和地表水流的不确定性。这里展示了减少水位曲线预测乖离率和不确定性的场地特征描述。采用完全综合的水文模型进行了两套包括不同漫地流机理的随机、瞬态模拟实验:邓恩漫地流实验和荷顿漫地流实验。采用模拟综合控制实例得到的数值的条件作用水力传导率场显示,与控制实例相比减少了条件水位曲线预测中的平均乖离率和方差。整体模拟显示荷顿漫地流水位曲线的不确定性大大减少。与非条件模拟相比,条件模拟预测的地表积水和地表压力分布平均误差减少、均方根误差减少。荷顿和邓恩漫地流实例中的不确定性减少展示了不同时间信号,而荷顿漫地流不确定性减少的更多。

Previsão melhorada do hidrograma através da caraterização subsuperficial: simulações estocásticas condicionadas dos taludes

Resumo

A heterogeneidade subsuperficial é uma das maiores origens da incerteza associada à condutividade hidráulica saturada. Trabalhos recentes demonstraram que a incerteza na condutividade hidráulica pode conferir incerteza significativa nos processos de geração de escoamento direto e no escoamento de água superficial. Demonstra-se o papel da caraterização do local para reduzir o viés da previsão do hidrograma. Utiliza-se um modelo hidrológico completamente integrado para fazer dois conjuntos de experiências de simulação estocástica em regime transitório compreendendo diferentes mecanismos de escoamento superficial: de Dunne e Hortoniano. Quando comparados com o caso de controlo, ao condicionar os campos de condutividade hidráulica utilizando valores retirados de um caso de controlo sintético simulado prova-se que se reduz tanto o viés médio como a variância num conjunto de previsões do hidrograma condicionado. As simulações do conjunto mostram uma maior redução de incerteza nos hidrogramas do fluxo Hortoniano. Comparando com as simulações não condicionadas, as simulações condicionadas preveem o encharcamento superficial e as distribuições de pressões superficiais com um erro médio reduzido e com uma raiz quadrada do erro quadrático médio reduzida. A redução da incerteza nos casos de fluxo Hortoniano e de Dunne demonstra sinais temporais diferentes, com uma redução mais substancial no caso do fluxo Hortoniano.

Notes

Acknowledgements

The authors gratefully acknowledge funding provide by the National Science Foundation grant EAR-0854516. This research was supported in part by the Golden Energy Computing Organization at the Colorado School of Mines using resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratory.

References

  1. Ashby SF, Falgout RD (1996) A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl Sci Eng 124(1):145–159Google Scholar
  2. Bakr MI, te Stroet CBM, Meijerink A (2003). Stochastic groundwater quality management: role of spatial variability and conditioning. Water Resour Res 39(4). doi: 10.1029/2002WR001745
  3. Bellin A, Fiori A (2003) Non-ergodic solute transport in self-similar porous formations: the effect of conditioning. Adv Water Resour 26(7):759–771. doi: 10.1016/S0309-1708(03)00045-9 CrossRefGoogle Scholar
  4. Beven KJ (1981) Comments on ‘A stochastic-conceptual analysis of rainfall-runoff processes on a hillslope’ by R. Allan Freeze. Water Resour Res 17(2):431–432CrossRefGoogle Scholar
  5. Binley A, Beven K, Elgy J (1989a) A physically based model of heterogeneous hillslopes: 2. effective hydraulic conductivities. Water Resour Res 25(6):1227–1233CrossRefGoogle Scholar
  6. Binley A, Elgy J, Beven K (1989b) A physically based model of heterogeneous hillslopes: 1. runoff production. Water Resour Res 25(6):1219–1226CrossRefGoogle Scholar
  7. Bulygina N, McIntyre N, Wheater H (2009) Conditioning rainfall-runoff model parameters for ungaged catchments and land management impact analysis. Hydrol Earth Syst Sci 13:893–904CrossRefGoogle Scholar
  8. Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476CrossRefGoogle Scholar
  9. Carle SF, Fogg GE (1997) Modeling spatial variability with one and multidimensional continuous-lag Markov chains. Math Geol 29(7):891–918CrossRefGoogle Scholar
  10. Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13(1):206–222. doi: 10.1007/s10040-004-0404-7 CrossRefGoogle Scholar
  11. Christensen OF, Diggle PJ, Ribeiro Jr. PJ (2001) Analysing positive-valued spatial data: the transformed Gaussian model. Geostat Environ Appl 11:287–298Google Scholar
  12. Comunian A, Renard P, Straubhaar J (2012) 3D multiple-point statistics simulation using 2D training images. Comput Geosci 40:49–65. doi: 10.1016/j.cageo.2011.07.009 CrossRefGoogle Scholar
  13. Dagan G (1989) Flow and transport in porous formations. Springer, New YorkCrossRefGoogle Scholar
  14. de Barros FPJ, Ezzedine S, Rubin, Y (2012) Impact of hydrogeological data on measures of uncertainty, site characterization and environmental performance metrics. Adv Water Resour 36:51–63, doi: 10.1016/j.advwatres.2011.05.004
  15. Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280CrossRefGoogle Scholar
  16. Eagleson PS (1978) Climate, soil and vegetation: 1. introduction to water balance dynamics. Water Resour Res 14(5):705–712CrossRefGoogle Scholar
  17. Feyen L, Beven K, De Smedt F, Freer JE (2001) Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: conditioning on head observations. Water Resour Res 37(3):625–638CrossRefGoogle Scholar
  18. Fielder FR, Ramirez JA (2000) A numerical method for simulating discontinuous shallow flow over an infiltrating surface. Int J Numer Methods Fluids 32:219–239CrossRefGoogle Scholar
  19. Fiori A, Russo D (2007) Numerical analyses of subsurface flow in a steep hillslope under rainfall: the role of the spatial heterogeneity of the formation hydraulic properties. Water Resour Res 43(7). doi: 10.1029/2006wr005365
  20. Fiori A, Russo D (2008) Travel time distribution in a hillslope: insight from numerical simulations. Water Resour Res 44. doi: 10.1029/2008WR007135
  21. Freeze RA (1972) Role of subsurface flow in generating runoff: 1. baseflow contributions to channel flow. Water Resour Res 8:609–624CrossRefGoogle Scholar
  22. Freeze RA (1980) A stochastic-conceptual analysis of rainfall-runoff processes on a hillslope. Water Resour Res 16(2):391–408CrossRefGoogle Scholar
  23. Freeze RA, Harlan RL (1969) Blueprint for a physically-based digitally simulated, hydrologic response model. J Hydrol 9:237–258CrossRefGoogle Scholar
  24. Frei S, Fleckenstein JH, Kollet SJ, Maxwell RM (2009) Patterns and dynamics of river-aquifer exchange with variably-saturated flow using a fully-coupled model. J Hydrol 375(3-4):383–393. doi: 10.1016/J. Jhydrol.2009.06.038 CrossRefGoogle Scholar
  25. Graham WD, McLaughlin D (1989) Stochastic analysis of nonstationary subsurface solute transport: 1. unconditional moments. Water Resour Res 25(2):215–232CrossRefGoogle Scholar
  26. Harvey CF, Gorelick SM (1995) Mapping hydraulic conductivity: sequential conditioning with measurements of solute arrival time, hydraulic head, and local conductivity. Water Resour Res 31(7):1615–1626CrossRefGoogle Scholar
  27. Hendricks Franssen HJ, Kinzelbach W (2009) Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. J Hydrol 365:261–274. doi: 10.1016/j.jhydrol.2008.11.033 CrossRefGoogle Scholar
  28. Herbst M, Diekkruger B, Vanderborght J (2006) Numerical experiments on the sensitivity of runoff generation to the spatial variation of soil hydraulic properties. J Hydrol 326:43–58CrossRefGoogle Scholar
  29. Jones JE, Woodward CS (2001) Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv Water Resour 24(7):763–774CrossRefGoogle Scholar
  30. Katz RW (1996) Use of conditional stochastic models to generate climate change scenarios. Climate Change 32:237–255CrossRefGoogle Scholar
  31. Kerrou J, Renard P, Hendricks Franssen HJ, Lunati I (2008) Issues in characterizing heterogeneity and connectivity in non-multiGuassian media. Adv Water Resour 31(1):147–159CrossRefGoogle Scholar
  32. Kitanidis PK (1986) Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resour Res 22(4):499–507CrossRefGoogle Scholar
  33. Kitanidis PK (1996) On the geostatistical approach to the inversion problem. Adv Water Resour 19(6):333–342CrossRefGoogle Scholar
  34. Kollet SJ, Maxwell RM (2006) Integrated surface-groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29(7):945–958. doi: 10.1016/J. Advwatres. 2005.08.006 CrossRefGoogle Scholar
  35. Kollet SJ, Maxwell RM, Woodward CS, Smith S, Vanderborght J, Vereecken H, Simmer C (2010) Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resour Res 46. doi: 10.1029/2009wr008730
  36. Llopis-Albert C, Capilla JE (2009) Gradual condition non-Guassian transmissivity fields to flow and mass transport data: 2. demonstration on a synthetic aquifer. J Hydrol 371:53–65. doi: 10.1016/j.jhydrol.2009.03.014 CrossRefGoogle Scholar
  37. Loague KM (1988) Impact of rainfall and soil hydraulic property information on runoff predictions at the hillslope scale. Water Resour Res 24(9):1501–1510CrossRefGoogle Scholar
  38. Maxwell RM, Kollet SJ (2008) Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach. Adv Water Resour 31(5):807–817. doi: 10.1016/J. Advwatres.2008.01.020 CrossRefGoogle Scholar
  39. Maxwell RM, Kastenberg WE, Rubin Y (1999) A methodology to integrate site characterization information into groundwater-driven health risk assessment. Water Resour Res 35(9):2841–2885CrossRefGoogle Scholar
  40. Maxwell RM, Welty C, Harvey RW (2007) Revisiting the Cape Cod bacteria injection experiment using a stochastic modeling approach. Environ Sci Technol 41(15):5548–5558CrossRefGoogle Scholar
  41. McLaughlin D (1995) Recent developments in hydrologic data assimilation. Rev Geophys 33(S2):977–984. doi: 10.1029/95RG00740 Google Scholar
  42. Meyerhoff SB, Maxwell RM (2011) Quantifying the effects of subsurface heterogeneity on hillslope runoff using a stochastic approach. Hydrogeol J 19:1515–1530. doi: 10.1007/s10040-011-0753-y CrossRefGoogle Scholar
  43. Nahar N, Govindaraju RS, Corradini C, Morbidelli R (2004) Role of run-on for describing field-scale infiltration and overland flow over spatially variable soils. J Hydrol 286(1-4):36–51. doi: 10.1016/J. Jhydrol.2003.09.011 CrossRefGoogle Scholar
  44. Neuman SP (2003) Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch Env Res Risk A 17:291–305. doi: 10.1007/S00477-003-0151-7 CrossRefGoogle Scholar
  45. Nowak W (2009) Measures of parameter uncertainty in geostatistical estimation and geostatistical optimal design. Math Geosci 42(2):199–221. doi: 10.1007/s11004-00909245-1 CrossRefGoogle Scholar
  46. Nowak W, de Barros FPJ, Rubin Y (2010), Bayesian geostatistical design: task-driven optimal site investigation when the geostatistical model is uncertain. Water Resour Res 46. doi: 10.1029/2009WR008312
  47. Reed PM, Kollat JB (2011) Save now, pay later? Multi-period many-objective groundwater monitoring design given systematic model errors and uncertainty. Adv Water Resour 35:55–68. doi: 10.1016/j.advwatres.2011.10.011 CrossRefGoogle Scholar
  48. Rihani JF, Maxwell RM, Chow FK (2010) Coupling groundwater and land surface processes: idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes. Water Resour Res 46. doi: 10.1029/2010WR009111
  49. Rouhani S, Georgakakos AP, Kitanidis PK, Loaicigia HA, Olea RA, Yates SR (1990a) Geostatistics in geohydrology: part I. basic concepts. J Hydraul Eng 116(5):612–632CrossRefGoogle Scholar
  50. Rouhani S, Georgakakos AP, Kitanidis PK, Loaicigia HA, Olea RA, Yates SR (1990b) Geostatistics in geohydrology: part II, applications. J Hydraul Eng 116(5):633–658CrossRefGoogle Scholar
  51. Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, OxfordGoogle Scholar
  52. Rubin Y, Dagan G (1992) Conditional estimation of solute travel time in heterogeneous formation: impact of transmissivity measurements. Water Resour Res 28(3):1033–1040CrossRefGoogle Scholar
  53. Smith L, Schwartz FW (1980) Mass transport: 1: a stochastic analysis of macroscopic dispersion. Water Resour Res 16(2):303–313CrossRefGoogle Scholar
  54. Smith RE, Woolhiser DA (1971) Overland flow on an infiltrating surface. Water Resour Res 7(4):899–913. doi: 10.1029/WR007i004p00899 CrossRefGoogle Scholar
  55. Tompson AFB, Ababou R, Gelhar LW (1989) Implementation of the 3-dimensional turning bands random field generator. Water Resour Res 25(10):2227–2243CrossRefGoogle Scholar
  56. Tompson AFB, Falgout RD, Smith SG, Bosl WJ, Ashby SF (1998) Analysis of subsurface contaminant migration and remediation using high performance computing. Adv Water Resour 22(3):203–221CrossRefGoogle Scholar
  57. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898CrossRefGoogle Scholar
  58. Williams JLI, Maxwell RM (2011) Propagating subsurface uncertainty to the atmosphere using fully-coupled, stochastic simulations. J Hydrometeorol 12:690–701. doi: 10.1175/2011JHM1363.1 CrossRefGoogle Scholar
  59. Wood EF (1976) An analysis of the effects of parameter uncertainty in deterministic hydrologic models. Water Resour Res 12(5):925–932CrossRefGoogle Scholar
  60. Woolhiser DA, Smith RE, Giraldez JV (1996) Effects of spatial variability of saturated hydraulic conductivity on Hortonian overland flow. Water Resour Res 32(3):671–678CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Steven B. Meyerhoff
    • 1
    • 2
  • Reed M. Maxwell
    • 1
  • Wendy D. Graham
    • 3
  • John L. WilliamsIII
    • 1
    • 4
  1. 1.Department of Geology and Geological Engineering, Hydrologic Science and Engineering ProgramColorado School of Mines, Golden COGoldenUSA
  2. 2.Itasca Denver, IncLakewoodUSA
  3. 3.University of Florida, Water Institute, Gainesville, FLGainesvilleUSA
  4. 4.Meteorological Institute of the University of BonnBonnGermany

Personalised recommendations