Advertisement

Hydrogeology Journal

, Volume 22, Issue 5, pp 1163–1178 | Cite as

Hydraulic conductivity estimation using direct current (DC) sounding data: a case study in East Nile Delta, Egypt

  • M. Attwa
  • A. T. Basokur
  • I. Akca
Report

Abstract

Automated vertical electrical sounding (VES) inversion schemes were applied for hydrogeological characterisation at a semi-arid area in the southeastern part of the East Nile Delta, Egypt. The apparent resistivity measurements were integrated with borehole, hydrogeological and structural information for a better description of the subsurface conditions. The final results were presented in the form of cross-sections, maps and 3D diagrams to visualise the geological and hydrogeological situations. The resistivity values derived from the VES data were used to predict the hydraulic conductivity (K) values by using two empirical relations, which depend on the direct relation between K and the aquifer transverse resistance (T) and the power relation between K and the aquifer resistivity (ρ). The estimated values were compared with the observed K values obtained from the pumping tests. The power law relation produces more reliable predicted K values that show a good correlation with the data compiled for the hydraulic gradient of the main Pleistocene aquifer in the East Nile Delta. The results also indicate that the joint use of an automated 1D interpretation algorithm and the power law empirical relationship constitute a valuable tool to characterise the hydrogeophysical properties of aquifers in the study area.

Keywords

Automated 1D inversion Groundwater exploration Hydrogeophysical investigations Hydraulic properties Egypt 

Estimation de la conductivité hydraulique à partir de données de sondages avec courant direct: un cas d’étude dans l’Est du Delta du Nil, Egypte

Résumé

Des schémas d’inversion automatique de sondages électriques verticaux (SEV) ont été utilisés pour la caractérisation hydrogéologique dans une zone semi-aride dans la partie sud-orientale de l’Est du Delta du Nil en Egypte. Les mesures de résistivité apparentes ont été intégrées à l’information hydrogéologique et structurale ainsi que des forages pour obtenir une meilleure description des conditions du sous-sol. Les résultats finaux ont été présentés sous forme de profils, de cartes et de graphiques 3D afin de visualiser le contexte géologique et hydrogéologique. Les valeurs de résistivité obtenues à partir des données de SEV ont été utilisées pour prédire les valeurs de conductivité hydraulique (K) en utilisant deux relations empiriques, qui dépendent de la relation directe entre K et la résistance transverse de l’aquifère (T) et la relation de puissance entre K et la résistivité de l’aquifère (ρ). Les valeurs estimées ont été comparées aux valeurs observées de K obtenues à partir des essais de pompage. La loi de puissance produit une meilleure prédiction des valeurs K montrant une bonne corrélation avec les données compilées pour le gradient hydraulique de l’aquifère principal Pléistocène dans l’Est du Delta du Nil. Les résultats montrent également que l’utilisation conjointe d’un algorithme automatique 1D pour l’interprétation et une loi de puissance empirique constitue un outil de valeur pour caractériser les propriétés hydrogéophysiques des aquifères dans la zone d’étude.

Estimación de la conductividad hidráulica usando sondeos de datos de corriente continua (DC): un caso de estudio en el Delta Oriental del Nilo, Egipto

Resumen

Se aplicaron los esquemas automatizados de inversión de los sondeos eléctricos verticales (VES) para la caracterización hidrogeológica en un area semiárida en la parte sudeste del Delta Oriental del Nilo, Egipto. La medidas de resistividad aparente fueron integradas con información de perforaciones, hidrogeológica y estructural para una mejor descripción de las condiciones del subsuelo. Los resultados finales se presentaron en forma de secciones transversales, mapas y diagramas 3D para visualizar las situaciones geológicas e hidrogeológicas. Los valores de resistividad derivados de los datos de los VES se usaron para predecir los valores de conductividad hidráulica (K) mediante el uso de dos relaciones empíricas, las cuales dependen de la relación directa entre K y la resistividad transversal del acuífero (T) y de la relación potencial entre K y la resistividad del acuífero (ρ). Los valores estimados se compararon con los valores observados de K obtenidos a partir de ensayos de bombeo. La relación de la ley potencial produce valores de K predichos más confiables que muestra una buena correlación con los datos compilados para el gradiente hidráulico del principal acuífero del Pleistoceno en el Delta Oriental del Nilo. Los resultados también indican que el uso conjunto de un algoritmo de interpretación automatizada 1D y la ley potencial de la relación empírica constituyen una herramienta valiosa para caracterizar las propiedades hidrogeofísicas de acuíferos en el área de estudio.

运用直流探测数据估算水力传导率:埃及东尼罗河三角洲的一个研究案例

摘要

采用自动化的垂直电探测反向方案对埃及东尼罗河三角洲一个半干旱地区的水文地质特征进行了描述。视电阻率测量数据结合钻孔、水文地质和构造信息可以更好地描述地表以下的情况。最终结果以截面、地图和3D图的形式展示出来,使地质和水文地质状况可视化。通过采用两个经验关系并利用来源于垂直电探测电阻率值预测水力传导率值(K),这两个经验关系取决于K和含水层横向电阻率(T)的直接关系及K和含水层电阻率(p)的功率关系。对估算的值与抽水试验观测到的K值进行了对比。幂次定律关系可得到更加可靠的预测K值,显示与用于东尼罗河三角洲主要更新世含水层水利梯度编制资料有很好的关联性。结果还表明,联合应用自动化1D解译算法和幂次定律经验关系构成了描述研究区含水层水文地球物理特性的宝贵工具。

Estimativa da condutividade hidráulica utilizando dados de sondagens de corrente direta (DC): um caso de estudo no Delta Este do Nilo, Egito

Resumo

Foram aplicados esquemas automatizados de inversão de sondagens elétricas verticais (VES) para a caraterização hidrogeológica duma área semiárida, na parte sudeste do Delta Este do Nilo, no Egito. As medições de resistividade aparente foram integradas com informações de furos, dados hidrogeológicos e estruturais, para uma melhor descrição das condições sub-superficiais. Os resultados finais foram apresentados na forma de seções transversais, mapas e diagramas em 3D, para visualizar as situações geológicas e hidrogeológicas. Os valores de resistividade, derivados dos dados das VES, foram utilizados para prever os valores da condutividade hidráulica (K), usando duas relações empíricas que dependem da relação direta entre K e a resistência transversal do aquífero (T) e da relação de potência entre K e a resistividade do aquífero (ρ). Os valores estimados foram comparados com os valores observados de K obtidos a partir de testes de bombeamento. A relação da lei de potência produz valores previstos de K mais confiáveis, que mostram uma boa correlação com os dados compilados para o gradiente hidráulico do aquífero principal do Plistocénico no Delta Este do Nilo. Os resultados também indicam que a utilização conjunta de um algoritmo de interpretação 1D automatizado e a relação empírica da lei de potência constituem uma valiosa ferramenta para caraterizar as propriedades hidrogeofísicas dos aquíferos na área de estudo.

Doğru akım (DA) sondaj verisinden hidrolik iletkenlik kestirimi: Doğu Nil Deltası, Mısır örneği

Öz

Doğu Nil Deltası’nın (Mısır) güneydoğu bölümündeki yarıkurak bölgenin hidrojeolojik özelliklerinin belirlenmesi için otomatik düşey elektrik sondajı (DES) ters-çözüm yöntemi uygulanmıştır. Görünür özdirenç ölçüleri, yeraltının daha iyi betimlenmesi için kuyu, hidrojeoloji ve yapısal bilgiler ile birlikte değerlendirilmiştir. Jeolojik ve hidrojeolojik koşulları görselleştirmek amacı ile sonuçlar, yapma-kesit, harita ve üç-boyutlu diyagramlar şeklinde sunulmuştur. DES verisinden hesaplanan özdirenç değerleri, hidrolik iletkenlik (K) değerlerini kestirmek amacıyla kullanılmıştır. Bu amaçla, sırası ile K değerleri ve akifer enine direnci (T) arasındaki doğrusal ilişki ile K değerleri ve akifer özdirenci arasındaki kuvvet ilişkisi kullanılmıştır. Hesaplanan değerler, pompa testlerinden elde edilen değerler ile karşılaştırılmıştır. Kuvvet ilişkisi güvenilir K değerleri üretmiş ve bu değerler Doğu Nil Deltası’ndaki Pleistosen akiferlerinde toplanan veri ile iyi ilişki göstermiştir. Otomatik bir-boyutlu yorumlama algoritması ile görgül kuvvet bağıntısının birlikte kullanımı, çalışma alanındaki akiferlerin hidrojeofiziksel özelliklerini tanımlamak için etkili bir araç oluşturmuştur.

Notes

Acknowledgements

A part of this article was presented at the 18th Annual International Meeting of Near Surface Geosciences, Paris, France, 3–5 September, 2012. The first author (MA) thanks the Scientific Research Council of Turkey (TÜBITAK) for a Post-Doc scholarship to Ankara University, Faculty of Engineering, Geophysical Engineering Department. MA would also like to express appreciation to Ahmed Nosier for great support, valuable discussions and assistance with data collection during this work. Ahmed Abdel Shaheid helped with one of the figures. The authors would like to thank an anonymous reviewer, M. Abou Heleika and the associate editor B. Minsley, for many helpful comments and suggestions.

References

  1. Abd El-Gawad A (1997) Shallow geophysical exploration for defining the water occurrences in the area east of the Nile Delta. PhD Thesis, University of Ain Shams, Cairo, EgyptGoogle Scholar
  2. Asfahani J (2007) Geoelectrical investigation for characterizing the hydrogeological conditions in semi-arid region in Khanasser valley, Syria. J Arid Environ 68:31–52CrossRefGoogle Scholar
  3. Attwa M (2012a) Electrical methods. LAP LAMBERT, Saarbrücken, GermanyGoogle Scholar
  4. Attwa M (2012b) On the use of DC resistivity soundings for characterizing the hydrogeological conditions in semi-arid region: the East of Nile Delta, Egypt. Extended abstracts, Near Surface 2012: 18th European Meeting of Environmental and Engineering Geophysics, Paris, France, 3–5 September 2012, P30 (Sub ID: 14902)Google Scholar
  5. Attwa M, Günther T (2013) Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers. Hydrol Earth Sys Sci (HESS) 17:4079–4094CrossRefGoogle Scholar
  6. Attwa M, Günther T, Grinat M, Binot F (2009) Transmissivity estimation from sounding data of Holocene tidal flat deposits in the north eastern part of Cuxhaven, Germany. Extended abstracts, Near Surface 2009: 15th European Meeting of Environmental and Engineering Geophysics, Dublin, Ireland, 7–9 September, 2009, P29 (Sub ID: 6710).Google Scholar
  7. Attwa M, Günther T, Grinat M, Binot F (2011) Evaluation of DC, FDEM and SIP resistivity methods for imaging a perched saltwater and shallow channel within coastal tidal sediments. Germany. J Appl Geophys 75:656–670CrossRefGoogle Scholar
  8. Attwa M, Akca I, Basokur AT, Günther T (2014) Structure-based geoelectrical models derived from genetic algorithms: a case study for hydrogeological investigations along Elbe River coastal area, Germany. J Appl Geophys. doi: 10.1016/j.jappgeo.2014.01.006
  9. Başokur AT (1984) A numerical direct interpretation method of resistivity soundings using the Pekeris model. Geophys Prospect 32:1131–1146CrossRefGoogle Scholar
  10. Başokur AT (1990) Microcomputer program for the direct interpretation of resistivity sounding data. Comput Geosci 16:587–601CrossRefGoogle Scholar
  11. Başokur AT (1999) Automated 1-D interpretation of resistivity soundings by simultaneous use of the direct and iterative methods. Geophys Prospect 47:149–177CrossRefGoogle Scholar
  12. Chandra S, Ahmed S, Ram A, Dewandel B (2008) Estimation of hard rock aquifer hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. J Hydrol 357:218–227CrossRefGoogle Scholar
  13. Chandra S, Dewandel B, Dutta S, Ahmed S (2010) Geophysical model of geological discontinuities in a granitic aquifer: analyzing small-scale variability of electrical resistivity for groundwater occurrences. J Arid Geophys 71:137–148CrossRefGoogle Scholar
  14. El Haddad IM (2002) Hydrogeological studies and their environmental impact on future management and sustainable development of the new communities and their surroundings, east of the Nile Delta. PhD Thesis, University of Mansoura, Mansoura, EgyptGoogle Scholar
  15. El-Dairy MD (1980) Hydrogeophysical studies on the Eastern part of Nile Delta using Isotope techniques. PhD Thesis, University of El-Azhar, Cairo, EgyptGoogle Scholar
  16. Eleraki M, Gadallah M, Gemail K, Attwa M (2010) Application of resistivity method in environmental study of the appearance of soil water in the central part of Tenth of Ramadan City, Egypt. Q J Eng Geol Hydrol 43:171–184CrossRefGoogle Scholar
  17. Elewa HH, Shohaib RE, Qaddah AA, Nousir AM (2012) Determining groundwater protection zones for the Quaternary aquifer of northeastern Nile Delta using GIS-based vulnerability mapping. Environ Earth Sci 68(2):313–331CrossRefGoogle Scholar
  18. El-Fayoumy IF (1968) Geology of ground water supplies in the region east of the Nile Delta and its extension in north Sinai. PhD Thesis, Cairo Univ., Cairo, EgyptGoogle Scholar
  19. El-Mahmoudi A (1989) Shallow geophysical studies on El-Sharkiya governorate, East Nile Delta. PhD Thesis, University of Masoura, Mansoura, EgyptGoogle Scholar
  20. El-Mahmoudi A, Gabr A (2009) Geophysical surveys to investigate the relation between the Quaternary Nile channels and the Messinian Nile Canyon at East Nile Delta. Egypt Arab J Geosci 2:53–67CrossRefGoogle Scholar
  21. FAO (1966) “High dam soil survey” project, vol 3. FAO UN, Rome, 483 ppGoogle Scholar
  22. Habeb H (2002) Geophysical evaluation of the groundwater resources of the area between Gabal Al-Hamza and Ismailia Canal, east of the Nile Delta. PhD Thesis, University of Ain Shams, Cairo, EgyptGoogle Scholar
  23. Hefny K (1980) Groundwater in the Nile Valley. Internal Arabic report, Ministry of Irrigations, Cairo, Egypt, pp 1–120Google Scholar
  24. Heigold PC, Gilkeson RH, Cartwright K, Reed PC (1979) Aquifer transmissivity from sacrificial electrical methods. Ground Water 17(4):338–345CrossRefGoogle Scholar
  25. Hördt A, Blaschek R, Kemna A, Zisser N (2007) Hydraulic conductivity estimation from induced polarisation data at the field scale: the Krauthausen case history. J Appl Geophys 62:33–46CrossRefGoogle Scholar
  26. Hussein A (2001) Hydrogeological and geophysical studies for evaluation of groundwater potentialities at Cairo-Bilbeis district. PhD Thesis, University of Suez Canal, Ismailia, EgyptGoogle Scholar
  27. Ismael AMA (2007) Application of remote sensing, GIS, and groundwater flow modeling in evaluating groundwater resources: two case studies—East Nile Delta, Egypt and Gold Valley, California. PhD Thesis, University of Texas, El Paso, USAGoogle Scholar
  28. Kelly WE (1977) Geoelectrical sounding for predicting aquifer properties. Ground Water 15:420–425CrossRefGoogle Scholar
  29. Khalil MH (2012) Reconnaissance of freshwater conditions in a coastal aquifer: synthesis of 1D geoelectric resistivity inversion and geohydrological analysis. Near Surf Geophys 10:427–441Google Scholar
  30. Loke MH (1999) Electrical imaging surveys for environmental and engineering studies: a practical guide to 2D and 3D surveys. Advanced Geosciences, Austin, TX, 57 ppGoogle Scholar
  31. Maillet R (1947) The fundamental equations of electrical prospecting. Geophysics 12:529–556CrossRefGoogle Scholar
  32. Massoud U, Santos FM, Khalil MA, Taha A, Abbas MA (2010) Estimation of aquifer hydraulic parameters from surface geophysical measurements: a case study of the Upper Cretaceous aquifer, central Sinai. Egypt Hydro J 18:699–710Google Scholar
  33. Mazac O, Cislerova M, Kelly WE, Landa I, Venhodova D (1990) Determination of hydraulic conductivities by surface geoelectrical methods. In: Ward SH (ed) Geotechnical and environmental geophysics, vol 2. Society of Exploration Geophysicists, Tulsa, OK, pp 125–131Google Scholar
  34. Metwaly M, Elawadi E, Moustafal SSR, Al Fouzan F, Mogren S, Al Arifi N (2012) Groundwater exploration using geoelectrical resistivity technique at Al-Quwy’yia area central Saudi Arabia. Int J Phys Sci 7(2):317–326CrossRefGoogle Scholar
  35. Ministry of Development and New Communities (1979) Suez Canal region integrated agricultural development study. Special reports nos. 1–3, Hunting Technical Services, Newcastle, UKGoogle Scholar
  36. Mohamed NE, Yaramanci U, Kheiralla KM, Abdelgalil MY (2011) Assessment of integrated electrical resistivity data on complex aquifer structures in NE Nuba Mountains, Sudan. J African Earth Sci 60:337–345Google Scholar
  37. Niwas S, Singhal DC (1981) Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. J Hydrol 50:393–399CrossRefGoogle Scholar
  38. Niwas S, Singhal DC (1985) Aquifer transmissivity of porous media from resistivity data. J Hydrol 82:143–153CrossRefGoogle Scholar
  39. Onuoha KM, Mbazi FCC (1988) Aquifers transmissivity from electrical sounding data: the case of Ajali sandstone aquifers southwest of Enugu, Nigeria. In: Ofoegbu CO (ed) Groundwater and mineral resources of Nigeria. Vieweg, Weisbaden, Germany, pp 17–30CrossRefGoogle Scholar
  40. Purvance D, Andricevic R (2000) Geoelectrical characterization of the hydraulic conductivity field and its spatial structure at variable scales. Water Resour Res 36(10):2915–2924CrossRefGoogle Scholar
  41. Sallouma M (1983) Hydrogeological and hydrogeochemical studies east of Nile Delta. PhD Thesis, University of Ain Shams, Cairo, EgyptGoogle Scholar
  42. Schlumberger (1984) Well evaluation conference of Egypt. Schlumberger Technical Editing, Houston, TXGoogle Scholar
  43. Shatta AA, Abdel Salam AA, Harga AA, et al (1979) Soil map of the Eastern Delta Region, El Tumilat-Suez, 4th report. Internal report, Academy of Scientific Research Technology, Cairo, Egypt, pp 89–105Google Scholar
  44. Skinner D, Heinson G (2004) A comparison of electrical and electromagnetic methods for the detection of hydraulic pathways in a fractured rock aquifer, Clare Valley, South Australia. Hydrogeol J 2:576–590CrossRefGoogle Scholar
  45. Soupios P, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis Basin in Crete. J Hydrol 338:122–131CrossRefGoogle Scholar
  46. Tong M, Tao H (2008) Permeability estimating from complex resistivity measurement of shaly sand reservoir. Geophys J Int 173:733–739CrossRefGoogle Scholar
  47. Velepen V (1988) Resist program, Ver. 1.0. MSc Research project, ITC, Delft, The NetherlandsGoogle Scholar
  48. Yogeshwar P, Tezkan B, Israil M, Candansayar ME (2012) Groundwater contamination in the Roorkee area, India: 2D joint inversion of radiomagnetotelluric and direct current resistivity data. J Appl Geophys 76:127–135CrossRefGoogle Scholar
  49. Zohdy AA (1989) Programs for the automatic processing and interpretation of Schlumberger sounding curves in Qbasic 4.0. US Geol Surv Open-File Rep 89–137 A and BGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Geology Department, Faculty of ScienceZagazig UniversityZagazigEgypt
  2. 2.Geophysical Engineering Department, Faculty of EngineeringAnkara UniversityAnkaraTurkey

Personalised recommendations