Advertisement

Hydrogeology Journal

, Volume 22, Issue 4, pp 883–892 | Cite as

Recharge and sustainability of a coastal aquifer in northern Albania

  • X. Kumanova
  • S. Marku
  • S. Fröjdö
  • G. JacksEmail author
Report

Abstract

The River Mati in Albania has formed a coastal plain with Holocene and Pleistocene sediments. The outer portion of the plain is clay, with three underlying aquifers that are connected to an alluvial fan at the entry of the river into the plain. The aquifers supply water for 240,000 people. Close to the sea the aquifers are brackish. The brackish water is often artesian and found to be thousands of years old. Furthermore, the salinity, supported by δ18O results, does not seem to be due to mixing with old seawater but due to diffusion from intercalated clay layers. Heavy metals from mines in the upstream section of River Mati are not an immediate threat, as the pH buffering of the river water is good. Moreover, the heavy metals are predominantly found in suspended and colloidal phases. Two sulphur isotope signatures, one mirroring seawater sulphate in the brackish groundwater (δ34S >21 ‰) and one showing the influence of sulphide in the river and the fresh groundwater (δ34S <10 ‰), indicate that the groundwater in the largest well field is recharged from the river. The most serious threat is gravel extraction in the alluvial fan, decreasing the hydraulic head necessary for recharge and causing clogging of sediments.

Keywords

Coastal aquifers Groundwater recharge Isotopes Risk assessment Albania 

Recharge et durabilité d’un aquifère côtier du Nord de l’Albanie

Résumé

La rivière Mati en Albanie a formé une plaine côtière avec des sédiments holocènes et pléistocènes. La partie externe de la plaine est argileuse, avec trois aquifères sous-jacents qui sont connectés à un cône alluvial à l’entrée de la rivière dans la plaine. Les aquifères alimentent en eau 240,000 personnes. Près de la mer, les aquifères sont saumâtres. L’eau saumâtre est souvent artésienne et âgée de milliers d’années. En outre, comme les résultats δ18O le confirment, la salinité ne semble pas être due au mélange avec de l’eau de mer ancienne, mais à de la diffusion à partir des couches d’argile intercalées. Les métaux lourds provenant des mines du cours amont de la rivière Mati ne constituent pas une menace immédiate car l’effet tampon lié au pH de l’eau de la rivière est bon. De plus, les métaux lourds se présentent principalement sous forme de phases colloïdale et en suspension. Deux signatures isotopiques du soufre, l’une minorant le sulfate marin dans l’eau souterraine saumâtre (δ34S >21 ‰) et l’autre montrant l’influence du sulfure dans la rivière et l’eau souterraine douce (δ34S <10 ‰) indiquent que l’eau souterraine du principal champ captant est rechargée par la rivière. La menace la plus sérieuse est l’extraction de gravier dans le cône alluvial qui diminue la charge hydraulique nécessaire à la recharge et cause le colmatage des sédiments.

Recarga y sustentabilidad de un acuífero costero en el norte de Albania

Resumen

El Río Mati en Albania ha formado una planicie costera con sedimentos holocenos y pleistocenos. La porción exterior de la planicie es arcillosa, con tres acuíferos subyacentes que están conectados a un abanico aluvial en la entrada del río dentro de la planicie Los acuíferos abastecen de agua a 240,000 personas. Cerca del mar los acuíferos son salobres. El agua salobre es a menudo artesiana y se encontró que es de miles de años de antigüedad. Más aún, la salinidad, basado en resultados de δ18O, no parece ser debida a la mezcla con agua de mar vieja sino debida a la difusión de capas de arcillas intercaladas. Los metales pesados de las minas en la sección agua arriba del Río Mati no son una amenaza inmediata, puesto que el pH como amortiguador es bueno. Además, los metales pesados son predominantemente encontrados en fases de suspensión y coloidal. Dos trazados isotópicos de azufre, uno reflejando el agua de mar en el agua subterránea salobre (δ34S >21 ‰) y uno mostrando la influencia del sulfuro en el río y en el agua subterránea dulce (δ34S <10 ‰), indican que el agua subterránea en el mayor de los campos de pozos es recargado desde el río. La amenaza más seria es la extracción de grava en el abanico aluvial, lo que disminuye la carga hidráulica necesaria para la recarga y causa la obstrucción de los sedimentos.

阿尔巴尼亚北部沿海含水层的补给和可持续性

摘要

阿尔巴尼亚Mati河造就了沿海平原,沉积物年代为全新世和更新时。平原的外围部分为粘土,下伏三个含水层,在河流进入平原的入口处与冲积扇相连。含水层为24万人口供水。接近海洋的地方,含水层为咸水。咸水常常为自流水,发现年龄有几千年了。此外,由 δ18O 结果支持的盐度似乎并不是与古海水混合造成的,而是夹层的粘土层扩散造成的。Mati河上游矿山的重金属并不是直接威胁,因为河水的pH缓冲作用很好。另外,重金属主要发现在悬浮和胶态相。两个硫同位素鲜明特征,一个反映了地下咸水中海水硫酸盐 (δ34S >21 ‰),另一个显示了河水和地下淡水中硫化物的影响(δ34S <10 ‰),表明最大的井场地下水受河流补给。最严重的威胁是冲积扇中的砾石采挖,降低了补给所需的水头,引起沉积物的堵塞。

Recarga e sustentabilidade de um aquífero costeiro no norte da Albânia

Resumo

O rio Mati, na Albânia, formou uma planície costeira com sedimentos do Holocénico e do Plistocénico. A parte externa da planície é constituida por argila, com três aquíferos sobrepostos que estão ligados a um leque aluvial na entrada do rio para a planície. Os aquiferos abastecem de água 240,000 pessoas. Na proximidade do mar as águas dos aquíferos são salobras. As águas salobras são frequentemente artesianas e com milhares de anos de idade. Além disso, a salinidade, suportada com resultados de δ18O, não parece ser devida a mistura com água do mar antiga mas devida à difusão a partir de camadas de argila intercaladas. Os metais pesados das minas na seção montante do rio Mati não são uma ameaça imediata, uma vez que o tamponamento de pH da água do rio é bom. Além disso, os metais pesados são encontrados predominantemente nas fases suspensas e coloidais. Duas assinaturas de isótopos de enxofre, uma refletindo o sulfato da água do mar na água subterrânea salobra (δ34S >21 ‰), e outra mostrando a influência de sulfureto no rio e na água doce subterrânea (δ34S <10 ‰), indicam que a recarga da água subterrânea no maior campo de captações é feita a partir do rio. A ameaça mais séria é a extração de cascalho no leque aluvial, diminuindo a carga hidráulica necessária para a recarga e causando a colmatação dos sedimentos.

Notes

Acknowledgements

We are thankful for the support from the Swedish Environmental Agency and for the good management provided by Julia Obrovac during the study. We are also thankful to our colleagues at the Albanian Geological Survey, notably the Director Prof. Dr Adil Neziraj, and Dr Arben Pambuku.

References

  1. Aliaj SH, Baldassarre G, Shkupi D (2001) Quaternary subsidence zones in Albania: some case studies. Bull Eng Geol Environ 59:313–318CrossRefGoogle Scholar
  2. Antonioli F, Anzidei M, Lambeck K, Auriema R, Gaddi D, Furlani S, Orri P, Solinas E, Gaspari A, Karinja S, Kovacic V, Surace L (2007) Sea-level changes during the Holocene in Sardinia and in northeastern Adriatic from archeological and geomorphological data. Quat Sci Rev 26:2463–2486CrossRefGoogle Scholar
  3. Antonellini M, Mollema P, Giambastiani B, Bishop K, Caruso L, Minchio A, Pellegrini L, Sabia M, Ulazzi E, Gabbianelli G (2008) Salt water intrusion in the coastal aquifer of the southern Po Plain, Italy. Hydrogeol J 16:1541–1556CrossRefGoogle Scholar
  4. Ballukrya PN, Ravi R (1998) Natural fresh-water ridge as barrier against sea-water intrusion in Chennai city. J Geol Soc India 52:279–286Google Scholar
  5. Beqiraj A, Gjoka F, Lamaj M, Cenameri M (2009) Assessment of geohazards and management of their possible impacts in the Kurbini region, Albania. Studia Univ Babes-Bolyai, Geol 54(2):9–12CrossRefGoogle Scholar
  6. Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic contaminated groundwater in alluvial aquifers from Delta Plains, eastern India. Water Resour Manag 13:79–92CrossRefGoogle Scholar
  7. Bottrell SH, Mortimer RJG, Davies IM, Harvey SM, Krom MD (2009) Sulphur cycling in organic rich marine sediments from a Scottish fjord. Sedimentology 56(4):1159–1173CrossRefGoogle Scholar
  8. Böttscher ME, Bernasconi SM, Brumsack H-J (1999) Carbon, sulfur and oxygen isotope geochemistry of interstitial waters from western Mediterranean. Proc. of the Ocean Drilling Program Scientific Results 161:413–421Google Scholar
  9. Brew DS, Vaso A (2011) Identification and implementation of adaption response measures in Drini-Mati River Delta. Presentation at a National Conference 3–4 Nov 2011, Tirana. www.ccalborg/editor-files/file/. Accessed 3 Oct. 2013
  10. Celo V, Babi D, Baraj B, Cullaj A (1999) An assessment of the heavy metal pollution in the sediments of the Albanian coast. Water Air Soil Poll 111(1–4):235–250CrossRefGoogle Scholar
  11. CEMSA (2012) Inventory of groundwater resources and their utilisation patterns. Nov 2012, 13 pp. http://cemsaproject.net/yahoo_site_admin/assets/docs/. Accessed 20 Aug 2013
  12. Cullaj A, Hasko A, Miho A, Schanz F, Brandl H, Bachofen R (2005) The quality of Albanian natural waters and the human impact. Environ Int 31:133–146CrossRefGoogle Scholar
  13. Demi G (2003) Waste assessment of copper mines and plants in Albania and their impact in surrounding areas. Report Mining and Processing Technology Institute, Tirana, Albania, 10 ppGoogle Scholar
  14. deRijk S, Hayes A, Rohling EJ (1999) Eastern Mediterranean sapropel interruption: an expression of the climatic deterioration around 7 ka BP. Mar Geol 153:337–343CrossRefGoogle Scholar
  15. Economou-Eliopoulos M, Eliopoulos D, Chryssoulis S (2008) A comparison of high-Au massive sulphide ores hosted in ophiolite complex of the Balkan Peninsula with modern analogues: genetic significance. Ore Geol Rev 33:81–100CrossRefGoogle Scholar
  16. Eftimi R (2001) Some considerations on seawater–freshwater relationship in Albanian costal area. www.aguas.igmees/igme/publica/tiac-02/ALBANIA-I.pdf. Accessed 10 January 2013
  17. Eftimi R (2010) Hydrogeological characteristics of Albania. AQUA mundi 1:79–92Google Scholar
  18. Eftimi R, Amataj S, Zoto J (2007) Groundwater circulation in two transboundary carbonate aquifers in Albania: their vulnerability and protection. In: Witkowski AJ, Kovalczyk A, Vrba J (eds) Groundwater vulnerability assessment and mapping. Taylor and Francis, London, pp 199–212Google Scholar
  19. Ericson JP, Vörösmarty CJ, Dingman SL, Ward LG, Meybeck M (2006) Effective sea-level rise and deltas: causes of change and human dimension implications. Global Planet Change 50(1–2):63–82CrossRefGoogle Scholar
  20. Fouache É (2006) 10 000 ans d’evolution des paysages en Adriatique et en Méditerranée Orientale [10 000 years of changes of the Adriatic and Central Mediterranean landscape]. Travaux de la Maison de l’Orient et de la Méditerranée, vol 45, Université Lumière Lyon 2, Lyon, France, 223 ppGoogle Scholar
  21. Fouache E, Vella C, Dimo L, Gruda G, Denefle M, Monnier O, Hotyat M, Huth E (2003) The progradation of the Albanian deltaic plains (Drin, Mati, Seman and Vjosa deltas): a matter of the last 500 years? Abstract from XVI INQUA Congress, Reno, NV, July 2003Google Scholar
  22. Gattacceca JC, Vallet-Coulomb C, Mayer A, Claude C, Radakovitch O, Conchetto E, Hamelin B (2009) Isotopic and geochemical characterization of salinization in the shallow aquifers of a reclaimed subsiding zone: the southern Venice Lagoon coastland. J Hydrol 278:46–61CrossRefGoogle Scholar
  23. Giordana G, Montginoul M (2006) Policy instruments to fight against seawater intrusion in coastal aquifers: an overview. Vie Milieu 56(4):287–294Google Scholar
  24. Gjoka F, Tabaku V, Salillari I, Henningsen P-F, Duering R-A (2010) Heavy metals in sediments from the Fani and Mati rivers (Albania). Carpath J Earth Env 5(2):153–160Google Scholar
  25. Golobocanin D, Zujic A, Milenkovic A, Miljevic N (2008) Precipitation composition and wet deposition temporal patterns in central Serbia for the period 1998 to 2004. Environ Monit Assess 142:185–198CrossRefGoogle Scholar
  26. Grazhdani S, Shumka S (2007) An approach to mapping soil erosion by water with application to Albania. Desalination 213:263–272CrossRefGoogle Scholar
  27. Gustafsson JP (2011) Visual MINTEQ ver. 3.0. USEAPA’s MINTEQ maintained by JP Gustafsson. www2.lwr.kth.se/Vara%20Datorprogram/Vminteq/index.html. Accessed January 2013
  28. Jacks G, Rajagopalan K (1996) Effects of past climate change on hydrochemistry and hydraulics in two large aquifers in S and SE Asia. In: 14th Salt Water Intrusion Meeting. Report no. 87, Swedish Geol. Survey, Uppsala, Sweden, pp 79–83Google Scholar
  29. Jacks G, Sharma VP, Torssander P, Åberg G (1994) Origin of sulphur in soil and water in a Precambrian terrain, S. India. Geochem J 28:351–358CrossRefGoogle Scholar
  30. Jacks G, Shammas M, Warrior U (2009) Two coastal aquifers in S Asia and management options. In: Palival BS (ed) Global groundwater resources and management. Scientific Publishers, Jodhpur, India, pp 133–140Google Scholar
  31. Lambeck K, Parcell A (2005) Sea-level change in the Mediterranean Sea since LGM: model predictions for tectonically stable areas. Quat Sci Rev 34:1969–1988CrossRefGoogle Scholar
  32. Lambeck K, Antonioli F, Anzidei M, Ferranti L, Leoni G, Scicchitano G, Silenzi S (2011) Sea level changes along the Italian coast during the Holocene and projections for the future. Quat Int 232(1–2):250–257CrossRefGoogle Scholar
  33. Lazo P, Cullaj A, Arapi A, Deda T (2007a) Arsenic in soil environments in Albania. In: Trace metals and other contaminants in the environment, vol 9, Elsevier, Amsterdam, pp 237–256Google Scholar
  34. Lazo P, Arapi A, Pjeshkazini L (2007b) An evaluation of arsenic content in some Albanian rivers. J Environ Prot Ecol 8(1):17–23Google Scholar
  35. Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88CrossRefGoogle Scholar
  36. Mathers S, Brew DS, Arthurton RS (1999) Rapid Holocene evolution and neotectonics of the Albanian Adriatic coastline. J Coastal Res 15(2):345–354Google Scholar
  37. Mercado A (1985) The use of hydrogeochemical patterns in carbonate sand and sandstone aquifers to identify intrusion and flushing of saline water. Ground Water 23:635–645CrossRefGoogle Scholar
  38. Norrman J, Sparrenbom C, Berg M, Nhan DC, Nhan PQ, Rosqvist H, Jacks G, Sigvardsson E, Baric D, Moreskog J, Harms-Ringdahl P, Van Hoan N (2008) Arsenic mobilization in a new well field for drinking water production along the Red River, Nam Du, Hanoi. Appl Geochem 23:3127–3142CrossRefGoogle Scholar
  39. Palyvos N, Lemeille F, Sorel D, Pantosi D, Pavlopoulos K (2008) Geomorphic and biological indicators of paleoseismicity and Holocene uplift rate at a coastal normal fault footwall. Geomorphology 96:16–38CrossRefGoogle Scholar
  40. Panettiere P, Cortecci G, Dinelli E, Bencini A, Guidi M (2000) Chemistry and sulfur isotopic composition of precipitation at Bologna, Italy. Appl Geochem 15:1455–1467CrossRefGoogle Scholar
  41. Petrinec B, Franic Z, Ilijanic N, Miko S, Strok M, Smodis B (2012) Estimation of sedimentation rate in the Middle and South Adriatic Sea using 137Cs. Radiat Prot Dosimetry 151(1):102–111CrossRefGoogle Scholar
  42. Phien-wej N, Giao PH, Natalaya P (2006) Land subsidence in Bangkok, Thailand. Eng Geol 82(4):187–201CrossRefGoogle Scholar
  43. Pierre C (1999) The oxygen and carbon isotope distribution in the Mediterranean water masses. Marine Geol 153:41–55CrossRefGoogle Scholar
  44. Plant JA, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck BA (2004) Arsenic and selenium. In: Holland HD, Turekian, KK (ed) Treatise on geochem, vol 9. Elsevier, Amsterdam, pp 17–66Google Scholar
  45. Raju KCB (1998) Importance of recharging the depleted aquifers: state of the art of artificial recharge in India. J Geol Soc India 51:424–454Google Scholar
  46. Rivaro P, Inanni C, Massolo S, Ruggieri N, Frache R (2004) Heavy metals in Albanian costal sediments. Toxicol Environ Chem 86:85–97Google Scholar
  47. Rivaro P, Massolo S, Ianni C, Frache R (2005) Speciation of heavy metals in Albanian coastal sediments. Toxicol Environ Chem 87(4):481–498CrossRefGoogle Scholar
  48. Robertson A, Shallo M (2000) Mesozoic-Tertiary tectonic evolution of Albania in its regional Eastern Mediterranean context. Tectonophysics 316:197–254CrossRefGoogle Scholar
  49. Rolph TC, Vigliotti L, Oldfield F (2004) Mineral magnetism and geomagnetic secular variation of marine and lacustrine sediments from central Italy: timing and nature of local and regional Holocene environmental change. Quat Sci Rev 23:1699–1722CrossRefGoogle Scholar
  50. Russak A, Sivan O (2010) Hydrogeochemical tool to identify salinization or freshening of coastal aquifers determined from combined field work, experiments and modeling. Environ Sci Technol 44:4096–4102CrossRefGoogle Scholar
  51. Sanford WE (1997) Correcting for diffusion in carbon-14 dating of ground water. Ground Water 35(2):357–361CrossRefGoogle Scholar
  52. Sarvana Kumar U, Sharma S, Navada SV, Deodhar AS (2009) Environmental isotopes investigation on recharge processes and hydrodynamics of the coastal sedimentary aquifers of Tiruvadanai, Tamil Nadu State. J Hydrol 364:23–39CrossRefGoogle Scholar
  53. Seguin AM, Norman A-L, Eaton S, Wadleigh M, Sharma S (2010) Elevated biogenic sulphur dioxide concentrations over North Atlantic. Atmos Environ 44(9):1139–1144CrossRefGoogle Scholar
  54. Shammas M (2008) The effectiveness of artificial recharge in combating seawater intrusion in Salalah coastal aquifer, Oman. Environ Geol 55:191–204CrossRefGoogle Scholar
  55. Shammas M, Jacks G (2007) Seawater intrusion in the Salalah plain aquifer, Oman. Environ Geol 53(3):575–587CrossRefGoogle Scholar
  56. Shtiza A, Swennen R, Tashko A (2005) Chromium and nickel distribution in soils, active rivers, overbank sediments and dust around the Burrel chromium smelter (Albania). J Geochem Explor 87:92–108CrossRefGoogle Scholar
  57. Stuiver M, Polach A (1977) Reporting of 14C data. Radiocarbon 19(3):355–363Google Scholar
  58. Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285CrossRefGoogle Scholar
  59. UNDP (United Nations Development Programme) (2012) Potential coastal environment restoration in the Drini-Mati River deltas. Final report, UNDP, Tirana, Albania, 86 ppGoogle Scholar
  60. van Straaten LMJU (1970) Holocen and late Pleistocene sedimentation in the Adriatic Sea. Geol Rundsch 60(1):106–131CrossRefGoogle Scholar
  61. Vreca P, Krajcar-Broníc I, Horvatincic N, Baresic J (2006) Isotopic characteristics of precipitation in Slovenia and Croatia: comparison of continental and maritime stations. J Hydrol 330:457–469CrossRefGoogle Scholar
  62. Walters BB, Rönnbäck P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E, Dahdouh-Guebas E (2008) Etnobiology, socio-economics and management of mangrove forests: a review. Aquat Bot 89(2):220–236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Albanian Geological SurveyTiranaAlbania
  2. 2.Department of Geology and MineralogyÅbo AkademiTurkuFinland
  3. 3.Divison of Land & Water Resources EngineeringRoyal Inst. of TechnologyStockholmSweden

Personalised recommendations