Advertisement

Hydrogeology Journal

, Volume 22, Issue 1, pp 151–162 | Cite as

Hydrochemistry and hydrogen sulfide generating processes in the Malm aquifer, Bavarian Molasse Basin, Germany

  • Christina Mayrhofer
  • Reinhard Niessner
  • Thomas BaumannEmail author
Paper

Abstract

Knowledge about the hydrochemical conditions of deep groundwater is crucial for the design and operation of geothermal facilities. In this study, the hydrochemical heterogeneity of the groundwaters in the Malm aquifer, Germany, is assessed, and reasons for the extraordinarily high H2S concentrations in the central part of the Bavarian Molasse Basin are proposed. Samples were taken at 16 sites, for a total of 37 individual wells, to analyze cations, anions, gas loading and composition. The hydrochemical characteristics of the Malm groundwater in the center of the Molasse Basin are rather heterogeneous. Although the groundwater in the central basin is dominated by meteoric waters, there is a significant infiltration of saline water from higher strata. Care has to be taken in the interpretation of data from geothermal sites, as effects of chemical stimulation of the boreholes may not be fully removed before the final analyses. The distribution of H2S in the gas phase is correlated to the gas loading of the water which increases in the central basin. Temperatures, isotopic data and the sulfur mass balance indicate that H2S in the central basin is related to thermochemical sulfate reduction (south of Munich) and bacterial sulfate reduction (north of Munich).

Keywords

Geothermal Carbonate rocks Germany Hydrochemistry Thermal conditions 

Hydrochimie et mécanisme de la formation de l’hydrogène sulfuré dans l’aquifère du Malm, Bassin Molassique Bavarois, Allemagne

Résumé

La connaissance de l’état hydrochimique des eaux souterraines profondes est cruciale pour la conception et l’exploitation des installations géothermales. Dans la présente étude, l’hétérogénéité hydrochimique des eaux de l’aquifère du Malm (Allemagne) est évaluée et les causes des concentrations extraordinairement élevées de H2S dans la partie centrale du Bassin Molassique Bavarois exposées. Des échantillons ont été prélevés sur 16 sites, dans au total 37 puits privés, en vue d’une analyse des cations, des anions, de la pression et composition du gaz. Les caractéristiques hydrochimiques de la nappe du Malm dans le centre du Bassin Molassique sont plutôt hétérogènes. Bien que les eaux souterraines de cette partie du bassin soient sous la dépendance des eaux météoriques, il y a une infiltration significative d’eaux salées depuis les couches surincombantes. Du soin doit être apporté à l’interprétation des données sur les sites géothermaux car les effets de la stimulation chimique des forages peuvent ne pas avoir été totalement éliminés avant la réalisation des analyses finales. La distribution du H2S dans la phase gazeuse est corrélée à la pression des gaz de l’eau, qui croît dans la partie centrale du bassin. Les températures, les données isotopiques et l’équilibre massique des sulfures indiquent que le H2S y est lié à la réduction des sulfates par voie thermochimique (Sud de Munich) et par voie bactérienne (Nord de Munich).

La hidroquímica y los procesos generadores de sulfuro de hidrógeno en el acuífero Malm, Cuenca Bavarian Molasse, Alemania

Resumen

El conocimiento acerca de las condiciones hidroquímicas del agua subterránea profunda es crucial para el diseño y la operación de las instalaciones geotermales. En este estudio, se evalúa la heterogeneidad hidroquímica del agua subterránea en el acuífero Malm, Alemania, y se proponer las razones de las extraordinariamente altas concentraciones de H2S en la parte central de la cuenca de Bavarian Molasse. Para analizar cationes, aniones, composición y carga de gas se tomaron muestras en 16 sitios, en un total de 37 pozos individuales. Las características hidroquímicas del agua subterránea del Malm en el centro de la cuenca Molasse son bastante heterogéneas. Aunque el agua subterránea en la cuenca central está dominada por aguas meteóricas, hay una significativa infiltración de agua salina desde estratos más altos. Se debe tener cuidado en la interpretación de los datos de los sitios geotermales, ya que los efectos de estimulación química de las perforaciones no pueden ser totalmente removidos antes del análisis final. Se correlacionó la distribución de H2S en la fase gaseosa con la carga de gas del agua que se incrementa en la cuenca central. Las temperaturas, los datos isotópicos y el balance de masa de sulfuro indican que el H2S en la cuenca central está relacionada a la reducción termoquímica del sulfato (sur de Munich) y a reducción bacterial de sulfato (norte de Munich).

Hidroquímica e processos geradores de sulfureto de hidrogénio no aquífero Malm, Bacia de Molasso da Baviera, Alemanha

Resumo

O conhecimento das condições hidroquímicas das águas subterrâneas profundas é crucial para o projeto e operação de instalações geotérmicas. Neste estudo, a heterogeneidade hidroquímica das águas subterrâneas do aquífero Malm, na Alemanha, é avaliado, e são propostas razões para as concentrações extremamente elevadas de H2S na parte central da Bacia de Molasso da Baviera. As amostras foram colhidas em 16 locais, para um total de 37 furos individuais, para analisar catiões, aniões, a quantidade de gás e a sua composição. As caraterísticas hidroquímicas da água subterrânea do Malm, no centro da Bacia de Molasso, são bastante heterogéneas. Embora a água subterrânea na bacia central seja dominada pelas águas meteóricas, existe uma infiltração significativa de água salina a partir de camadas superiores. E necessário ter cuidado na interpretação dos dados provenientes de sítios geotérmicos, visto que os efeitos da estimulação química dos furos não podem ser completamente removidos antes das análises finais. A distribuição de H2S na fase gasosa está correlacionada com a carga de gás da água, que aumenta na bacia central. Temperaturas, dados isotópicos e o balanço de massa de enxofre indicam que o H2S na bacia central está relacionado com a redução termoquímica do sulfato (a sul de Munique) e com a redução bateriana de sulfato (a norte de Munique).

Notes

Acknowledgements

Financial support by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety is gratefully acknowledged. We also would like to thank our project partners FU Berlin, Germany (coordinator), Erdwerk GmbH, Munich, Germany, and LfU Bayern, Munich, Germany for their support and D. Kirste for his very helpful suggestions during the review process.

References

  1. Alawi M, Lerm S, Vetter A, Wolfgramm M, Seibt A, Würdemann H (2011) Diversity of sulfate reducing bacteria in a plant using deep geothermal energy. Grundwasser 16:105–112CrossRefGoogle Scholar
  2. Andres G, Frisch H (1981) Hydrogeologie und Hydraulik im Malmkarst des Molassebeckens und der angrenzenden Fränkisch-Schwäbischen Alb [Hydrogeology and hydraulics in the Malm karst in the Molasse basin and the Swabian-Frankonian Alb]. Schriftenr Bayer Landesamt Wasserwirtsch 15:108–117Google Scholar
  3. Bailey AA, Smith JW (1972) Improved method for the preparation of sulfur dioxide from barium sulfate for isotope ratio studies. Anal Chem 44(8):1542–1543CrossRefGoogle Scholar
  4. Baumann M, Quentin KE (1981) Hydrochemische Ergebnisse und Beurteilung des Thermal- und Schwefelwassers [Hydrochemical results and evaluation of the thermal and sulfuric waters]. Schriftenr Bayer Landesamt Wasserwirtsch 15:117–125Google Scholar
  5. Bayer Geol Landesamt (ed) (1996) Erläuterungen zur Geologischen Karte von Bayern 1:500000 [Explanation to the geological map of Bavaria 1:500000]. Bayer. Geol. Landesamt, Munich, GermanyGoogle Scholar
  6. Berner RA (1980) Early diagenesis. Princeton University Press, Princeton, NJGoogle Scholar
  7. Birner J, Mayr C, Thomas L, Schneider M, Baumann T, Winkler A (2011) Hydrochemie und Genese der tiefen Grundwässer des Malmaquifers im bayerischen Teil des süddeutschen Molassebeckens [Hydrochemistry and evolution of deep groundwaters in the Malm aquifer in the Bavarian part of the South German Molasse Basin]. Z Geol Wiss 39:291–308Google Scholar
  8. Carlé W (1975) Die Mineral- und Thermalwässer von Mitteleuropa [Mineral and thermal waters of Central Europe]. Wiss. Verlagsges., Stuttgart, GermanyGoogle Scholar
  9. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, New YorkGoogle Scholar
  10. Coleman ML, Shephard TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995CrossRefGoogle Scholar
  11. Craig H (1961) Isotopic variation in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  12. Deutsches Institut für Normung (1995) DIN 51855–4: Prüfung von gasförmigen Brennstoffen und sonstigen Gasen - Bestimmung des Gehaltes an Schwefelverbindungen - Teil 4: Gehalt an Schwefelwasserstoff, Zinkacetat-Verfahren [Testing of gaseous fuels and oother gases: determination of sulphur compounds content, part 4—content of hydrogen sulfide, zinc acetate method]. Beuth, BerlinGoogle Scholar
  13. Domenico PA, Schwartz W (1998) Physical and chemical hydrogeology. Wiley, New YorkGoogle Scholar
  14. Emery D, Robinson A (1993) Inorganic geochemistry: applications to petroleum geology. Blackwell, OxfordGoogle Scholar
  15. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  16. Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103CrossRefGoogle Scholar
  17. Goldbrunner JE (1997) Vergleich von Isotopenuntersuchungen an Tiefengrundwässern des Steirischen Beckens und des Oberösterreichischen Molassebeckens [Comparison of the isotopic data of deep groundwater in the Styrian Basin, Austria, and the Upper Austrian Molasse Basin]. Mitt Österr Geol Ges 88:31–39Google Scholar
  18. Goldhaber MB, Kaplan IR (1974) The sea. Wiley, Chichester, UK, pp 569–665Google Scholar
  19. Hesse R, Schmidt-Thomé P (1975) Neue Jodwasservorkommen im Bereich der bayerischen Alpenrand-Strukturen bei Bad Tölz [New iodine groundwater resources at the alpine structures near Bad Tölz, Bavaria, Germany]. Geol Jahrb C 11:31–66Google Scholar
  20. Jörgensen BB, Isaksen MF, Jannash HW (1992) Bacterial sulfate reduction above 100 °C in deep sea hydrothermal vent sediments. Science 258:703–704CrossRefGoogle Scholar
  21. Krouse HR, Ritchie RGS, Roche RS (1987) Sulphur isotope composition of H2S evolved during the non-isothermal pyrolysis of sulphur-containing materials. J Anal Appl Pyrol 12:19–29CrossRefGoogle Scholar
  22. Krouse HR, Viau AA, Eliuk LS, Ueda A, Halas S (1988) Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 333:415–419CrossRefGoogle Scholar
  23. Langmuir D (1971) Geochemistry of some carbonate ground waters in central Pennsylvania. Geochim Cosmochim Acta 35:1023–1045CrossRefGoogle Scholar
  24. Lemcke K (1976) Übertiefe Grundwässer im süddeutschen Alpenvorland [Excess depth groundwater in Wouth Germany]. Bull Ver Schweiz Petroleum-Geol Ing 42:9–18Google Scholar
  25. Lemcke K (1988) Geologie von Bayern, I: Das bayerische Alpenvorland vor der Eiszeit [Geology of Bavaria, I: the Bavarian Alpine foothills before the Quaternary]. Schweizerbart, Stuttgart, GermanyGoogle Scholar
  26. Liu QY, Worden RH, Jin ZJ, Liu WH, Li J, Gao B, Zhang DW, Hu AP, Yang C (2013) TSR versus non-TSR processes and their impact on gas geochemistry and carbon stable isotopes in Carboniferous, Permian and Lower Triassic marine carbonate gas reservoirs in the Eastern Sichuan Basin, China. Geochim Cosmochim Acta 100:96–115CrossRefGoogle Scholar
  27. Macdonald DD, Roberts B, Hyne JB (1978) Corrosion of carbon steel during cyclical exposure to wet elemental sulphur and the atmosphere. Corros Sci 18(5):499–501CrossRefGoogle Scholar
  28. Machel HG (1987) Some aspects of diagenetic sulphate-hydrocarbon redox-reactions. In: Marshall J (ed) Diagenesis of sedimentary sequences. Geol Soc Spec Publ 36, pp 15–28Google Scholar
  29. Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings: old and new insights. Sediment Geol 140:143–175CrossRefGoogle Scholar
  30. Machel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl Geochem 10:373–389CrossRefGoogle Scholar
  31. Morris DR, Sampaleanu LP, Veysey DN (1980) The corrosion of steel by aqueous-solutions of hydrogen-sulfide. J Electrochem Soc 127(6):1228–1235CrossRefGoogle Scholar
  32. Nöth S (1997) High H2S contents and other effects of thermochemical sulfate reduction in deeply burried carbonate reservoirs: a review. Geol Rundsch 86:275–287CrossRefGoogle Scholar
  33. Orr WL (1974) Changes in sulfur content and isotope ratios of sulfur during petroleum maturation study of Big Horn basin Paleozoic oils. AAPG Bull 58(11):2295–2318Google Scholar
  34. Orr WL (1977) Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. In: Advances in Organic Geochemistry. Enadisma, Madrid, pp 571–597Google Scholar
  35. Orr WL (1982) Rate and mechanism of non-microbial sulfate reduction. GSA, Boulder, CO, 580 ppGoogle Scholar
  36. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99–4259Google Scholar
  37. Perrin DD (1982) Ionization constants of inorganic acids and bases in aqueous solution. Pergamon, OxfordGoogle Scholar
  38. Prestel R, Stier P, Jobmann M, Schulz R, Strayle G, Wendebourg J, Werner J, Wolf M, Eichinger L, Salvamoser J, Weise S, Fritz P (1991) Hydrogeothermische Energiebilanz und Grundwasserhaushalt des Malmkarstes im süddeutschen Molassebecken [Hydrogeothermal energy balance and groundwater balance of the Malm karst in the South German Molasse Basin]. Bayer. LfW und LGRB, Munich, GermanyGoogle Scholar
  39. Reis MAM, Almeida JS, Lemos PC, Carrondo MJT (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40:593–600CrossRefGoogle Scholar
  40. Schulte U, Strauß H, Bergmann A, Obermann P (1997) Isotopenverhältnisse der Schwefel- und Kohlenstoffspezies aus Sedimenten und tiefen Grundwässern der Niederrheinischen Bucht [Isotopic ratios of sulfur and carbon species from sediments and deep groundwater in the lower Rhine Bay]. Grundwasser 2:103–110CrossRefGoogle Scholar
  41. Stichler W, Rauert W, Weise S, Wolf M, Koschel G, Stier P, Prestel R, Hedin K (1987) Isotopenhydrologische und hydrochemische Untersuchungen zur Erkundung des Fließsystems im Malmkarstaquifer des süddeutschen Alpenvorlandes [Isotope hydrological and hydrochemical investigations of the flow regime in the Malm karst of the South German Alpine foothills]. Z Dtsch Geol Ges 138:387–398Google Scholar
  42. Tilley B, Baumann T (2012) On temperature attenuation in open-loop wells. Renew Energy 48:416–423CrossRefGoogle Scholar
  43. Udluft P (1975) Das tiefere Grundwasser zwischen Vindelicischem Rücken und Alpenrand [The deep groundwater between Vindelician Crest and the Alps]. Geol Jahrb C 11:3–29Google Scholar
  44. Villinger E (1977) Über Potentialverteilung und Strömungssysteme im Karstwasser der Schwäbischen Alb [Hydraulic potential and flow regime of the groundwater in the karst of the Swabian Alb]. Geol Jahrb C 18:9–93Google Scholar
  45. Wagner B, Kus G, Kainzmaier B, Spörlein T, Wilferth T, Veit W, Fritsch P, Wrobel M, Lindenthal W, Neumann J, Sprenger W (2009) Erläuterungen zur Hydrogeologischen Karte von Bayern 1:500000 [Explanation to the hydrogeological map of Bavaria 1:500000]. Bayer. Landesamt f. Umwelt, Munich, GermanyGoogle Scholar
  46. Wynn JG, Sumrall JB, Onac BP (2010) Sulfur isotopic composition and the source of dissolved sulfur species in thermo-mineral springs of the Cerna Valley, Romania. Chem Geol 271:31–43CrossRefGoogle Scholar
  47. Zhu GY, Zhang SC, Liang YB (2007a) The controlling factors and distribution prediction of H2S formation in marine carbonate gas reservoir, China. Chin Sci Bull 52:150–163CrossRefGoogle Scholar
  48. Zhu GY, Zhang SC, Liang YB, Li QR (2007b) The genesis of H2S in the Weiyuan Gas Field, Sichuan Basin and its evidence. Chinese Sci Bull 52(10):1394–1404CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christina Mayrhofer
    • 1
  • Reinhard Niessner
    • 1
  • Thomas Baumann
    • 1
    Email author
  1. 1.Institute of HydrochemistryTUMMunichGermany

Personalised recommendations