Advertisement

Hydrogeology Journal

, Volume 22, Issue 1, pp 217–231 | Cite as

Optimizing the design of a geothermal district heating and cooling system located at a flooded mine in Canada

  • J. RaymondEmail author
  • R. Therrien
Paper

Abstract

Flooded underground mines are attractive for groundwater heat pump systems, as the voids created during mining operations enhance the subsurface permeability and storage capacity, which allows the extraction of significant volumes of groundwater without requiring extensive drilling. Heat exchange at a flooded mine is, however, difficult to predict because of the complex geometry of the underground network of tunnels. A case study is presented here to demonstrate that numerical simulations of groundwater flow and heat transfer can help assess production temperatures required to optimize the design of a heat pump system that uses mine water. A 3D numerical model was developed for the Gaspé Mines located in Murdochville, Canada, where a district heating and cooling system is being studied. The underground mining tunnels and shafts are represented in the model with 1D elements whose flow and heat transfer contributions are superimposed to those of the 3D porous medium. The numerical model is calibrated to simultaneously reproduce the groundwater rebound that occurred when the mine closed and the drawdown measured during a pumping test conducted in a former mining shaft. Predictive simulations over a period of 50 years are subsequently performed to minimize pumping rate and determine maximum heat extraction rate.

Keywords

Geothermal Heat pump Mine Canada Thermal conditions 

Conception optimisée d’un système géothermique de quartier pour le chauffage et la climatisation à l’endroit d’une mine inondée au Canada

Résumé

Les mines souterraines inondées offrent des avantages pour les systèmes de pompe à chaleur d’aquifère puisque les vides créés par les opérations minières contribuent à l’accroissent de la perméabilité du sous-sol et de la capacité d’emmagasinement, ce qui permet l’extraction de volumes significatifs d’eau souterraine sans recourir à de nombreux forages. Les échanges de chaleur dans une mine inondée sont cependant difficiles à prévoir en raison de la géométrie complexe du réseau de galeries souterraines. Une étude de cas est présentée afin de démontrer comment la simulation numérique de l’écoulement d’eau souterraine et des transferts de chaleur peut aider à l’évaluation des températures d’opération pour optimiser la conception d’un système de pompe à chaleur opéré avec l’eau de la mine. Un modèle numérique 3D a été développé pour les Mines de Gaspé, situées à Murdochville, Canada, où l’installation d’un système énergétique de quartier pour le chauffage et la climatisation est à l’étude. Les galeries souterraines et les puits de la mine sont représentés dans le modèle par des éléments 1D dont les contributions à l’écoulement et au transfert de chaleur sont superposées à celles du milieu poreux 3D. Le modèle numérique est calé de manière à reproduire simultanément la remontée d’eau souterraine qui a suivi la fermeture de la mine et le rabattement mesuré lors d’un essai de pompage réalisé dans un ancien puits de ventilation. Des simulations couvrant une période de 50 ans sont ensuite effectuées afin de minimiser le débit de pompage et de fixer le taux d’extraction de chaleur maximal selon les prédictions du modèle.

Optimización del diseño de sistema de calentamiento y refrigeración de un distrito geotermal situado en una mina inundada en Canadá

Resumen

Las minas subterráneas inundadas son atractivas para los sistemas de bombas de calor de agua subterránea, porque el vacío creado durante las operaciones de minería enriquece la permeabilidad del subsuelo y la capacidad de almacenamiento, lo que permite la extracción de volúmenes significativos de aguas sin requerir de extensas de perforaciones. El intercambio de calor en una mina inundada es, sin embargo, difícil para predecir debido a la compleja geometría de las redes de túneles en el subsuelo. Aquí se presenta un caso de estudio para demostrar que las simulaciones numéricas del flujo de agua subterránea y la transferencia de calor pueden ayudar a evaluar la producción de las temperaturas requeridas para optimizar el diseño del sistema de bombeo de calor que usa el agua de la mina. Se desarrolló un modelo numérico 3D para las Minas Gaspé ubicadas en Murdochville, Canadá, donde un sistema de calentamiento y refrigeración distrital está siendo estudiado. Los túneles en el subsuelo y los pozos de mina están representados en el modelo con elementos 1D cuyas contribuciones al flujo y calor se sobreimponen a las del medio poroso 3D. El modelo numérico está calibrado para reproducir simultáneamente la recuperación del agua subterránea que ocurrió cuando la mina se cerró y la depresión medida durante un ensayo de bombeo realizado en un antiguo pozo de la mina. Las simulaciones predictivas sobre un período de 50 años son subsecuentemente realizadas para minimizar los caudales de bombeo y determinar la máxima tasa de extracción de calor.

Otimização do projeto de uma rede geotérmica de aquecimento e de refrigeração localizado numa mina inundada no Canadá

Resumo

As minas subterrâneas inundadas são locais atrativos para a instalação de sistemas extração de águas subterrâneas com bomba de calor, na medida em que os espaços vazios criados durante as operações de mineração aumentam a permeabilidade do subsolo e a capacidade de armazenamento, o que permite a extração de volumes significativos de águas subterrâneas sem exigir grandes perfurações. As trocas térmicas numa mina inundada são, contudo, difíceis de prever, devido à geometria complexa da rede subterrânea de túneis. Apresenta-se um caso de estudo para demonstrar que as simulações numéricas do escoamento de águas subterrâneas e de transferência de calor podem ajudar a avaliar as temperaturas de produção necessárias para otimizar o projeto de um sistema de bomba de calor que utiliza água de mina. Desenvolveu-se um modelo numérico 3D para as Minas Gaspé, localizadas em Murdochville, no Canadá, onde está a ser estudado um sistema de aquecimento e de refrigeração. Os túneis subterrâneos e os poços de mina são representados no modelo com elementos 1D, cujas contribuições de fluxo e de transferência de calor são impostas às do meio poroso 3D. O modelo numérico é calibrado para reproduzir, simultaneamente, o ressalto de águas subterrâneas que ocorreu quando a mina fechou e o rebaixamento medido durante um ensaio de caudal realizado num poço de extração antigo. Os cenários de previsão para um período de 50 anos são posteriormente executados para minimizar a taxa de extração e determinar o valor máximo de extração de calor.

Notes

Acknowledgements

The town of Murdochville, the Fondation Gaspésie-Les-Îles, the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds québécois de la recherche sur la nature et les technologies (FQRNT) are acknowledged for funding this research. Collaboration from the staff at the town of Murdochville and Xstrata at the Gaspé Mines was greatly appreciated. Comments from Dr. Wolfram Rühaak and a second anonymous reviewer, who both deserve acknowledgement, helped to improve the manuscript.

References

  1. Adams R, Younger PL (2001) A strategy for modeling ground water rebound in abandoned deep mine systems. Ground Water 39(2):249–261CrossRefGoogle Scholar
  2. Allcock JB (1982) Skarn and porphyry copper mineralization at Mines Gaspé, Murdochville, Quebec. Econ Geol 77(4):971–999CrossRefGoogle Scholar
  3. Bazargan Sabet D, Demollin E, Van Bergermeer J-J (2008) Geothermal use of deep flooded mines. Proceedings of Post-Mining Symposium, Nancy, France, February 2008, 11 ppGoogle Scholar
  4. Bear J (1988) Dynamics of fluids in porous media. Elsevier, New YorkGoogle Scholar
  5. Boyaud C, Therrien R (2004) Numerical modeling of mine water rebound in Saizerais, northeastern France. In: Miller CT, Farthing MW, Gray WG, Pinder GF (eds) Proceedings of the 15th International Conference on Computational Methods in Water Resources, Chapel Hill, North Carolina. Computational Methods in Water Resources, vol 2, Developments in Water Science 55. Elsevier, Amsterdam, pp 977–989Google Scholar
  6. Brouyère S, Orban P, Wildemeersch S, Couturier J, Gardin N, Dassargues A (2009) The hybrid finite element mixing cell method: a new flexible method for modelling mine ground water problems. Mine Water Environ 28(2):102–114CrossRefGoogle Scholar
  7. Diersch HJG (2005) FEFLOW reference manual. Institute for Water Resources Planning and Systems Research, BerlinGoogle Scholar
  8. Drury MJ, Jessop AM, Lewis TJ (1987) The thermal nature of the Canadian Appalachian crust. Tectonophysics 133:1–14CrossRefGoogle Scholar
  9. Environment Canada (2004) Climate normals 1971–2000. http://climat.meteo.gc.ca/climate_normals/index_f.html. Accessed 8 June 2004
  10. Ferguson G (2012) Characterizing uncertainty in groundwater-source heating and cooling projects in Manitoba, Canada. Energy 37(1):201–206CrossRefGoogle Scholar
  11. Florides G, Kalogirou S (2007) Ground heat exchangers: a review of systems, models and applications. Renew Energ 32(15):2461–2478CrossRefGoogle Scholar
  12. Freedman VL, Waichler SR, Mackley RD, Horner JA (2012) Assessing the thermal environmental impacts of an groundwater heat pump in southeastern Washington State. Geothermics 42:65–77CrossRefGoogle Scholar
  13. Gehlar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974CrossRefGoogle Scholar
  14. Ghomshei MM, Meech JA (2003) Usable heat from mine waters: coproduction of energy and minerals from “Mother Earth”. Proceedings of the 4th IPMM Conference, Sendai, Japan, May 2003, 8 ppGoogle Scholar
  15. Ghoreishi Madiseh SA, Ghomshei MM, Hassani FP, Abbasy F (2012) Sustainable heat extraction from abandoned mine tunnels: a numerical model. J Renew Sustain Energ 4 (3):033102. 16 ppGoogle Scholar
  16. Grasby SE, Allen DM, Chen Z, Ferguson G, Jessop AM, Kelman M, Ko M, Majorowicz J, Moore M, Raymond J, Therrien R (2011) Geothermal energy resource potential of Canada. Open file Report 6914, Geological Survey of Canada, Calgary, ABGoogle Scholar
  17. Graf T, Therrien R (2007) Coupled thermohaline groundwater flow and single-species reactive solute transport in fractured porous media. Adv Water Resour 30(4):742–771CrossRefGoogle Scholar
  18. Hall A, Scott JA, Shang H (2011) Geothermal energy recovery from underground mines. Renew Sustain Energ Rev 15(2):916–924CrossRefGoogle Scholar
  19. Hamm V, Bazargan Sabet B (2010) Modelling of fluid flow and heat transfer to assess the geothermal potential of a flooded coal mine in Lorraine, France. Geothermics 39(2):177–186CrossRefGoogle Scholar
  20. Hirsch JJ (2004) DOE-2.2 Building energy use and cost analysis program, vol 1: basics. Lawrence Berkeley National Laboratory, Berkeley, CA. http://doe2.com/DOE2/index.html. Accessed 7 April 2010
  21. Huttrer GW (1997) Geothermal heat pumps: an increasingly successful technology. Renew Energ 10(2–3):481–488CrossRefGoogle Scholar
  22. Jessop AM (1990) Thermal geophysics. Developments in Solid Earth Geophysics, vol 17. Elsevier, AmsterdamGoogle Scholar
  23. Jessop AM, Macdonald JK, Spence H (1995) Clean energy from abandoned mines at Springhill, Nova-Scotia. Energ Sour 17(1):93–106CrossRefGoogle Scholar
  24. Kavanaugh SP, Rafferty K (1997) Ground-source heat pumps: design of geothermal systems for commercial and institutional buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GAGoogle Scholar
  25. Lo Russo S, Civita MV (2009) Open-loop groundwater heat pumps development for large buildings: a case study. Geothermics 38(3):335–345CrossRefGoogle Scholar
  26. Malolepszy Z (2003) Low temperature, man-made geothermal reservoirs in abandoned workings of underground mines. Proceedings of the Twenty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 2003, 7 ppGoogle Scholar
  27. Malolepszy Z, Demollin-Schneiders E, Bowers D (2005) Potential use of geothermal mine water in Europe. Proceedings of the World Geothermal Energy Congress, Antalya, Turkey, April 2005, 3 ppGoogle Scholar
  28. Molson JW, Frind EO, Palmer CD (1992) Thermal-energy storage in an unconfined aquifer. 2. Model development, validation, and application. Water Resour Res 28(10):2857–2867CrossRefGoogle Scholar
  29. Omer AM (2008) Ground-source heat pumps systems and applications. Renew Sustain Energy Rev 12(2):344–371CrossRefGoogle Scholar
  30. Ordóñez A, Jardón S, Álvarez R, Andrés C, Pendás F (2012) Hydrogeological definition and applicability of abandoned coal mines as water reservoirs. J Environ Monit 14:2127–2136CrossRefGoogle Scholar
  31. Rafferty K (2003) Ground water issues in geothermal heat pump systems. Ground Water 41(4):408–410CrossRefGoogle Scholar
  32. Raymond J (2006) Low-temperature geothermal potential of the Gaspé Mines, Murdochville. MSc Thesis, Université Laval, Québec, CanadaGoogle Scholar
  33. Raymond J, Therrien R (2008) Low-temperature geothermal potential of the flooded Gaspé Mines, Québec, Canada. Geothermics 37(2):189–210CrossRefGoogle Scholar
  34. Raymond J, Therrien R, Hassani F (2008) Overview of geothermal energy resources in Québec (Canada) mining environments. In: Rapantova N, Hrkal Z (eds) 10th International Mine Water Association Congress: mine water and the environment. Technical University of Ostrava, Ostrava, Czech Republic, June 2008, 12 ppGoogle Scholar
  35. Renz A, Rühaak W, Schätzl P, Diersch H-JG (2009) Numerical modeling of geothermal use of mine water: challenges and examples. Mine Water Environ 28(1):2–14CrossRefGoogle Scholar
  36. Rodríguez R, Díaz MB (2009) Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method. Renew Energ 34(7):1716–1725CrossRefGoogle Scholar
  37. Sudicky EA, Unger AJA, Lacombe S (1995) A noniterative technique for the direct implementation of well bore boundary conditions in 3-dimensional heterogeneous formations. Water Resour Res 31(2):411–415CrossRefGoogle Scholar
  38. Therrien R, Sudicky EA (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J Contam Hydrol 23(1–2):1–44CrossRefGoogle Scholar
  39. Therrien R, Sudicky EA (2000) Well bore boundary conditions for variably-saturated flow modeling. Adv Water Resour 24:195–201CrossRefGoogle Scholar
  40. Therrien R, McLaren RG, Sudicky EA, Panday SM (2010) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Université Laval, QuébecGoogle Scholar
  41. Tóth A, Bobok E (2007) A prospect geothermal potential of an abandoned copper mine. Proceedings of the Thirty-Second Workshop on Geothermal Reservoir Engineering, Stanford University, CA, May 2007, 3 ppGoogle Scholar
  42. Waples DW, Waples JS (2004) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids, part 1: minerals and nonporous rocks. Nat Resour Res 13(2):97–122CrossRefGoogle Scholar
  43. Wares R, Brisebois D (1998) Geology and metallogeny of the Cu-porphyry-related Mines Gaspé, Murdochville, Gaspésie. Mineralogical Association of Canada Joint annual meeting field trip B4 guide book, MAC, QuébecGoogle Scholar
  44. Watzlaf GR, Ackman TE (2006) Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ 25(1):1–14CrossRefGoogle Scholar
  45. Wieber G, Pohl S (2008) Mine water: a source of geothermal energy — examples from the Rhenish Massif. In: Rapantova N, Hrkal Z (eds) 10th International Mine Water Association Congress: Mine Water and the Environment. Technical University of Ostrava, Ostrava, Czech Republic, 4 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut national de la recherche scientifique, Centre Eau Terre EnvironnementQuébecCanada
  2. 2.Département de géologie et de génie géologiqueUniversité LavalQuébecCanada

Personalised recommendations