Advertisement

Hydrogeology Journal

, Volume 21, Issue 7, pp 1567–1580 | Cite as

Improving assessment of groundwater-resource sustainability with deterministic modelling: a case study of the semi-arid Musi sub-basin, South India

  • S. Massuel
  • B. A. George
  • J.-P. Venot
  • L. Bharati
  • S. Acharya
Report

Abstract

Since the 1990s, Indian farmers, supported by the government, have partially shifted from surface-water to groundwater irrigation in response to the uncertainty in surface-water availability. Water-management authorities only slowly began to consider sustainable use of groundwater resources as a prime concern. Now, a reliable integration of groundwater resources for water-allocation planning is needed to prevent aquifer overexploitation. Within the 11,000-km2 Musi River sub-basin (South India), human interventions have dramatically impacted the hard-rock aquifers, with a water-table drop of 0.18 m/a over the period 1989–2004. A fully distributed numerical groundwater model was successfully implemented at catchment scale. The model allowed two distinct conceptualizations of groundwater availability to be quantified: one that was linked to easily quantified fluxes, and one that was more expressive of long-term sustainability by taking account of all sources and sinks. Simulations showed that the latter implied 13 % less available groundwater for exploitation than did the former. In turn, this has major implications for the existing water-allocation modelling framework used to guide decision makers and water-resources managers worldwide.

Keywords

Numerical modelling Groundwater management Water supply Hard-rock aquifer India 

Amélioration de l’évaluation de la pérennité de la ressource en eau souterraine à l’aide d’une modélisation déterministe : cas du sous-bassin semi aride Musi, Inde du Sud

Résumé

Depuis les années 1990, des agriculteurs indiens, aidés par le gouvernement, sont partiellement passés de l’irrigation par eau de surface à l’irrigation par eau de nappe en réponse à la disponibilité incertaine de l’eau de surface. Les autorités gestionnaires de l’eau ne commencent que lentement à considérer l’utilisation durable des ressources en eau souterraine comme une préoccupation primordiale. Aujourd’hui, une intégration fiable des ressources en eau souterraine dans un plan de répartition de l’eau est nécessaire pour prévenir une surexploitation de l’aquifère. Sur les 11,000 km2 du sous-bassin de la rivière Musi (Sud de l’Inde), les interventions humaines ont impacté de façon dramatique les aquifères du socle, avec un abaissement de la surface libre de la nappe de 0.18 m/an sur la période 1989–2004. Un modèle numérique de représentation de la nappe entièrement discrétisé a été utilisé avec succès à l’échelle du bassin versant. Le modèle permet deux conceptualisations distinctes de la disponibilité de l’eau de la nappe à quantifier : l’une est liée aux flux facilement quantifiés l’autre exprime mieux la durabilité sur le long terme, grâce à la prise en compte de toutes les sources et de toutes les pertes. Les simulations montrent que la dernière implique 13 % d’eau disponible de moins que la première. Corrélativement, ceci a une incidence majeure dans le cadre de la modélisation de la répartition d’eau existant, utilisé pour guider les décideurs et les gestionnaires des ressources en eau à travers le monde.

Mejora de la evaluación de la sustentabilidad del recurso de agua subterránea con un modelado determinístico: un caso de estudio de la subcuenca semiárida de Musi, Sur de India

Resumen

Desde los años 1990, los agricultores de India, apoyados por el gobierno, se han desplazado parcialmente del riego con agua superficial al agua subterránea en respuesta a la incertidumbre de la disponibilidad de agua superficial. Las autoridades de manejo del agua solo lentamente comenzaron a considerar un uso sustentable de los recursos de agua subterránea como una preocupación primaria. Actualmente, se necesita una integración confiable de los recursos de agua subterránea en la planificación de la distribución del agua para prevenir la sobreexplotación de acuíferos. Dentro de los 11,000-km2 de la subcuenca del Río Musi (sur de India), las intervenciones humanas han impactado dramáticamente los acuíferos de rocas duras, con un descenso del nivel freático de 0.18 m/año durante el período 1989–2004. Se implementó exitosamente un modelo numérico de agua subterránea totalmente distribuido en la escala de cuenca. El modelo permitió cuantificar dos conceptualizaciones distintas de la disponibilidad de agua subterránea: una fue asociada a flujos fácilmente cuantificables, y una que fue más expresiva de la sustentabilidad a largo plazo teniendo en cuenta todas las fuentes y sumideros. Las simulaciones mostraron que esta última implicaba 13 % menos agua subterránea disponible de para la explotación de lo que arrojó la primera. A su vez, esto tiene grandes implicancias para la existencia del marco modelado de la distribución del agua usado para guiar los que toman las decisiones y a los que gestionan los recursos hídricos en todo el mundo.

Melhorando a avaliação da sustentabilidade dos recursos de água subterrânea por modelação determinística: um estudo de caso da sub-bacia semi-árida do Musi, Sul da Índia

Resumo

Desde os anos 90 que os agricultores da Índia, apoiados pelo governo, alteraram parcialmente as suas origens de água destinada a rega, de águas superficiais para águas subterrâneas, em resposta à incerteza na disponibilidade de recursos hídricos superficiais. Só muito lentamente as autoridades de gestão da água começaram a considerar o uso sustentável dos recursos hídricos subterrâneos como a sua principal preocupação. A fim de evitar a sobre-exploração dos aquíferos, é necessária uma integração fiável dos recursos hídricos subterrâneos no planeamento e gestão da água. Numa área de 11,000 km2, correspondente à extensão da sub-bacia do Rio Musi (Sul da Índia), as intervenções humanas têm afetado drasticamente os aquíferos de rochas fraturadas, com rebaixamentos da ordem de 0.18 m/ano durante o período 1989–2004. Foi implementado com sucesso, à escala de bacia, um modelo numérico de água subterrânea totalmente distribuído. O modelo permitiu simular duas conceções distintas de disponibilidade de água subterrânea para a sua quantificação: uma associada a fluxos facilmente quantificados e outra mais relacionada com a sustentabilidade a longo prazo, tendo em conta todas as fontes e sumidouros. As simulações mostraram que, nesta ultima conceção, 13 % das águas subterrâneas estavam menos disponíveis para exploração do que na primeira. Este facto tem implicações importantes para a estrutura de modelação de alocação de água existente, a qual é usada para orientar as tomadas de decisão dos gestores de recursos hídricos em todo o mundo.

Notes

Acknowledgments

The authors are indebted to the Australian Centre for International Agricultural Research (ACIAR) for their financial support of this project. This project was made possible thanks to the support and data provided by the Indian water authorities, especially the Andhra Pradesh state Ground Water and Minor Irrigation departments. The very constructive reviews of D. Feinstein, J. Gurwin and D. Gossel greatly improved the manuscript.

References

  1. Alley M, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42(1):12–16CrossRefGoogle Scholar
  2. Andhra Pradesh Gov. (1989–2004) Handbook of statistics. Andhra Pradesh, IndiaGoogle Scholar
  3. Babel MS, Das Gupta A, Nayak DK (2005) A model for optimal allocation of water to competing demands. Water Resour Manag 19(6):693–712CrossRefGoogle Scholar
  4. Batchelor C, Mohan Rao R, Rao M (2003) Watershed development: a solution to water shortages in semi-arid India or part of the problem? Land Water Resour Rev 3:1–10Google Scholar
  5. Bekesi G, McGuire M, Moiler D (2009) Groundwater allocation using a groundwater level response management method-Gnangara groundwater system, Western Australia. Water Resour Manage 23(9):1665–1683CrossRefGoogle Scholar
  6. Biggs TW, Gumma MK, Thenkabail PS, Scott CA, Parthasaradhi GR, Turral H (2006) Vegetation phenology and irrigated area mapping using MODIS time-series, ground surveys, and agricultural census data in Krishna River basin, India. Int J Remote Sens 27(19):4245–4266CrossRefGoogle Scholar
  7. Biggs TW, Gaur A, Scott CA, Thenkabail P, Parthasaradhi G, Gumma MK, Acharya S, Turral H (2007) Closing of the Krishna Basin: stream flow depletion and macro scale hydrology. IWMI Research report 111, IWMI, Colombo, Sri LankaGoogle Scholar
  8. Celio M, Scott CA, Giordano M (2010) Urban-agricultural water appropriation: the Hyderabad, India case. Geogr J 176:39–57CrossRefGoogle Scholar
  9. Chandra S, Ahmed S, Ram A, Dewandel B (2008) Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. J Hydrol 357(3–4):218–227CrossRefGoogle Scholar
  10. Coudrain-Ribstein A, Pratx B, Talbi A, Jusserand C (1998) Is the evaporation from phreatic aquifers in arid zones independent of the soil characteristics? CR Acad Sci Paris IIa 326(3):159–165Google Scholar
  11. Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10(2):254–277CrossRefGoogle Scholar
  12. Cutlac IM, He L, Horbulyk TM (2006) Integrated modelling for river basin management: the influence of temporal and spatial scale in economic models of water allocation. Water Sci Technol 53(10):55–63CrossRefGoogle Scholar
  13. Deshpande N, Kumar K (2012) Historical climate analysis of Krishna basin, India. Second annual report of ACIAR project LWR/2007/113, The University of Melbourne, Melbourne, AustraliaGoogle Scholar
  14. Devlin JF, Sophocleous M (2005) The persistence of the water budget myth and its relationship to sustainability. Hydrogeol J 13(4):549–554CrossRefGoogle Scholar
  15. Dewandel B, Lachassagne P, Wyns R, Maréchal JC, Krishnamurthy NS (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330:260–284CrossRefGoogle Scholar
  16. Dewandel B, Gandolfi JM, de Condappa D, Ahmed S (2008) An efficient methodology for estimating irrigation return flow coefficients of irrigated crops at watershed and seasonal scale. Hydrol Process 22(11):1700–1712CrossRefGoogle Scholar
  17. DHI (2008) MIKE-SHE: integrated surface water and groundwater model. Horsholm, DenmarkGoogle Scholar
  18. Domenico P (1972) Concepts and models in groundwater hydrology. McGraw-Hill, New YorkGoogle Scholar
  19. Fredericks JW, Labadie JW, Altenhofen JM (1998) Decision support system for conjunctive stream-aquifer management. J Water Res Pl-ASCE 124:69–78CrossRefGoogle Scholar
  20. George BA, Malano HM, Davidson B (2007) Integrated water allocation-economic modeling at a catchment scale. In: Proceedings of International Congress on Modelling and Simulation-2007, Christchurch, New Zealand, 10–14 Dec 2007, pp 322–329Google Scholar
  21. George BA, Malano HM, Davidson B, Massuel S (2008) A modeling system to evaluate future water allocation strategies in complex basins: a case study of the Musi Catchment, India. 31st Hydrology and Water Resources Symposium and 4th International Conference on Water Resources and Environment Research, 14–17 April 2008, Adelaide, Australia, pp 1120–1131Google Scholar
  22. George BA, Malano HM, Davidson B, Hellegers P, Bharathi L, Massuel S (2011a) An integrated hydro-economic modelling framework to evaluate water allocation strategies I: model development. Agr Water Manag 98(5):733–746CrossRefGoogle Scholar
  23. George BA, Malano HM, Davidson B, Hellegers P, Bharati L, Massuel S (2011b) An integrated hydro-economic modelling framework to evaluate water allocation strategies II: scenario assessment. Agr Water Manag 98(5):747–758CrossRefGoogle Scholar
  24. GoI-CWDT (Government of India-Cauvery Water Disputes Tribunal) (2007) Final award of the Krishna Water Disputes Tribunal. GoI, New DelhiGoogle Scholar
  25. GoI-KWDT (Government of India-Krishna Water disputes tribunal) (1976) The further report of the Krishna Water disputes tribunal with the decision. GoI, New DelhiGoogle Scholar
  26. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00–92:121Google Scholar
  27. Jacobs KL, Holway JM (2004) Managing for sustainability in an arid climate: lessons learned from 20 years of groundwater management in Arizona, USA. Hydrogeol J 12(1):52–65CrossRefGoogle Scholar
  28. Jakeman AJ, Letcher RA (2003) Integrated assessment and modelling: features, principles and examples for catchment management. Environ Model Software 18(6):491–501CrossRefGoogle Scholar
  29. Kalf FRP, Woolley DR (2005) Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol J 13(1):295–312CrossRefGoogle Scholar
  30. Lachassagne, P, Ahmed S, Golaz C, Maréchal J-C, Thiery D, Touchard F, Wyns R (2001). A methodology for the mathematical modelling of hard-rock aquifers at catchment scale based on the geological structure and the hydrogeological functioning of the aquifer. XXXI IAH Congress “New approaches characterizing groundwater flow”. “Hard Rock Hydrogeology” session, Munich, Germany, 10 September 2001Google Scholar
  31. Lachassagne P, Wyns R, Dewandel B (2011) The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova 23(3):145–161CrossRefGoogle Scholar
  32. Letcher RA, Jakeman AJ, Croke BFW (2004) Model development for integrated assessment of water allocation options. Water Resour Res 40:W05502. doi: 10.1029/2003WR002933 CrossRefGoogle Scholar
  33. Letcher RA, Croke BFW, Jakeman AJ (2007) Integrated assessment modelling for water resource allocation and management: a generalised conceptual framework. Environ Model Software 22(5):733–742CrossRefGoogle Scholar
  34. Lubczynski M, Gurwin J (2005) Integration of various data sources for transient groundwater modelling with spatio-temporally variable fluxes: Sardon study case, Spain. J Hydrol 306:71–96CrossRefGoogle Scholar
  35. Maréchal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered–fractured layer of a hard rock aquifer. Water Resour Res 40:W11508CrossRefGoogle Scholar
  36. Maréchal JC, Dewandel B, Ahmed S, Galeazzi L, Zaidi FK (2006) Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J Hydrol 329:281–293CrossRefGoogle Scholar
  37. Massuel S, George B, Gaur A, Nune R (2007) Groundwater modelling for sustainable resource management in the Musi Catchment, India. Proceedings, International Congress on Modelling and Simulation, Christchurch, New Zealand, 10–13 December 2007, pp 1429–1435Google Scholar
  38. Massuel S, Perrin J, Wajid M, Mascre C, Dewandel B (2008) A simple low-cost method for monitoring groundwater pumping duration. Ground Water 47(1):141–145CrossRefGoogle Scholar
  39. Molle F, Wester P, Hirsh P (2007) River basin development and management. In: Molden D (ed) Water for food, water for life: a comprehensive assessment of water management in agriculture. Earthscan, London, IWMI, Colombo, Sri Lanka, pp 585–625Google Scholar
  40. Naik PK, Awasthi AK (2003) Groundwater resources assessment of the Koyna River Basin, India. Hydrogeol J 11(5):582–594CrossRefGoogle Scholar
  41. Patwardhan S, Kulkarni A (2012) Modelling and analysis of climate change in the Krishna basin, India. Second annual report of ACIAR project LWR/2007/113, The University of Melbourne, Melbourne, AustraliaGoogle Scholar
  42. Perera BJC, James B, Kularathna MDU (2005) Computer software tool REALM for sustainable water allocation and management. J Environ Manag 77:291–300CrossRefGoogle Scholar
  43. Perrin J, Ferrant S, Massuel S, Dewandel B, Maréchal JC, Aulong S, Ahmed S (2012) Assessing water availability in a semi-arid watershed of southern India using a semi-distributed model. J Hydrol 460–461:143–155CrossRefGoogle Scholar
  44. Rangarajan R, Athavale RN (2000) Annual replenishable groundwater potential of India: an estimate based on injected tritium studies. J Hydrol 234:38–53CrossRefGoogle Scholar
  45. Rogers PP, Fiering MB (1986) Use of systems analysis in water management. Water Resour Res 22(9):146–158CrossRefGoogle Scholar
  46. Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43:W03437Google Scholar
  47. Sethi LN, Kumar DN, Panda SN, Mal BC (2002) Optimal crop planning and conjunctive use of water resources of a coastal river basin. Water Resour Manage 16(2):145–164CrossRefGoogle Scholar
  48. Sethi LN, Panda SN, Nayak MK (2006) Optimal cropping and water resources allocation in a coastal groundwater basin, Orissa, India. Agric Water Manag 83:209–220CrossRefGoogle Scholar
  49. Shah T (2009) Taming the anarchy: groundwater governance in South Asia. Resources for the Future/IWMI, Washington, DC/ColomboGoogle Scholar
  50. Sharda VN, Kurothe RS, Sena DR, Pande VC, Tiwari SP (2006) Estimation of groundwater recharge from water storage structures in a semi-arid climate of India. J Hydrol 329:224–243CrossRefGoogle Scholar
  51. Sophocleous M (2005) Groundwater recharge and sustainability in the High Plains Aquifer in Kansas, USA. Hydrogeol J 13(2):351–365CrossRefGoogle Scholar
  52. Sukhija BS, Reddy DV, Nandakumar MV, Rama (1997) A method for evaluation of artificial recharge through percolation tanks using environmental chloride. Ground Water 35(1):161–165CrossRefGoogle Scholar
  53. Thomas T, Jaiswal RK, Galkate R, Singh S (2009) Development of a rainfall-recharge relationship for a fractured basaltic aquifer in Central India. Water Resour Manag 23(15):3101–3119CrossRefGoogle Scholar
  54. Van Rooijen DJ, Turral H, Biggs TW (2005) Sponge city: water balance of mega-city water use and wastewater use in Hyderabad, India. Irrig Drain 54:S81–S91CrossRefGoogle Scholar
  55. Venot JP (2009) Dynamics and new challenges in the Indian water sector: trajectory of the Krishna basin, South India. In: Molle F, Wester P (eds) River basins trajectories. IWMI, Colombo, Sri Lanka and CABI, Wallingford, UKGoogle Scholar
  56. Venot JP, Ratna Reddy V, Umapathy D (2010) Coping with drought in irrigated South India: farmers’ adjustments in Nagarjuna Sagar. Agric Water Manag 97:1434–1442CrossRefGoogle Scholar
  57. Wyns R, Baltassat JM, Lachassagne P, Legchenko A, Vairon J, Mathieu F (2004) Application of SNMR soundings for groundwater reserves mapping in weathered basement rocks (Brittany, France). Bull Soc Geol Fr 175(1):21–34Google Scholar
  58. Yates D, Sieber J, Purkey D, Huber-Lee A (2005) WEAP21: a demand-, priority- and preference-driven water planning model—part 1, model characteristics. Water Int 30:487–500CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Massuel
    • 1
    • 2
  • B. A. George
    • 3
  • J.-P. Venot
    • 4
  • L. Bharati
    • 5
  • S. Acharya
    • 1
    • 6
  1. 1.International Water Management InstituteHyderabadIndia
  2. 2.UMR G-EAU (IRSTEA, CIHEAM-IAMM, CIRAD, ENGREF, IRD, SupAgro)TunisTunisia
  3. 3.Department of Civil & Environmental EngineeringUniversity of MelbourneMelbourneAustralia
  4. 4.Irrigation &Water EngineeringWageningen UniversityWageningenThe Netherlands
  5. 5.International Water Management InstituteKathmanduNepal
  6. 6.School of Computer and Security ScienceEdith Cowan UniversityPerthAustralia

Personalised recommendations