Advertisement

Hydrogeology Journal

, Volume 21, Issue 7, pp 1673–1677 | Cite as

How important is the impact of land-surface inundation on seawater intrusion caused by sea-level rise?

  • Behzad Ataie-AshtianiEmail author
  • Adrian D. Werner
  • Craig T. Simmons
  • Leanne K. Morgan
  • Chunhui Lu
Technical Note

Abstract

The influence of sea-level rise (SLR) on seawater intrusion (SWI) has been the subject of several publications, which consider collectively a range of functional relationships within various hydrogeological and SLR settings. Most of the recent generalized analyses of SWI under SLR neglect land-surface inundation (LSI) by seawater. A simple analytical method is applied to quantitatively assess the influence and importance of LSI on SLR–SWI problems under idealized conditions. The results demonstrate that LSI induces significantly more extensive SWI, with inland penetration up to an order of magnitude larger in the worst case, compared to the effects of pressure changes at the shoreline in unconfined coastal aquifers with realistic parameters. The study also outlines some of the remaining research challenges in related areas, concluding that LSI impacts are among other important research questions regarding the SLR–SWI problems that have not been addressed, including the effects of aquifer heterogeneities, real-world three dimensionality, and mitigation measures.

Keywords

Seawater intrusion Climate change Seawater overtopping Coastal aquifer Sea-level rise 

Quelle est l’importance de l’impact de l’inondation des terres sur l’intrusion marine causée par l’élévation du niveau de la mer?

Résumé

L’influence de l’élévation du niveau marin sur l’intrusion marine a fait l’objet de plusieurs publications, qui considèrent ensemble une série de relations fonctionnelles entre diverses configurations hydrogéologiques et marines. La plupart des analyses générales récentes portant sur les intrusions marines liées à la fluctuation du niveau marin négligent l’inondation des terres par la mer. Une méthode analytique simple est appliquée pour évaluer quantitativement, dans des conditions théoriques, l’influence et l’importance de l’inondation des terres sur l’élévation du niveau de la mer et l’intrusion marine. Les résultats montrent que l’inondation des terres induit de façon significative une intrusion marine plus étendue et, dans le pire des cas, une pénétration dans l’arrière pays plus importante que celle due aux effets des variations de pression sur les aquifères côtiers libres le long la ligne de rivage, calculée avec des paramètres réalistes. L’article souligne également quelques uns des défis encore posés à la recherche dans les domaines de ce genre, concluant que les impacts de l’inondation des terres figurent parmi les autres questions importantes de la recherche concernant les problèmes d’élévation du niveau de la mer et d’intrusion de l’eau de mer à n’avoir pas été abordées et qui comprennent l’incidence des hétérogénéités de l’aquifère, le caractère tridimensionnel du monde réel et les approches simplificatrices.

Qué tan importante es el impacto de la inundación de la superficie del terreno en la intrusión de agua de mar causada por el ascenso del nivel del mar?

Resumen

La influencia del ascenso del nivel del mar (SLR) en la intrusión de agua marina (SWI) ha sido objeto de varias publicaciones, que consideran colectivamente un rango de relaciones funcionales dentro de varias configuraciones hidrogeológicas y de SLR. La mayor parte de los recientes análisis generalizados de SWI bajo SLR desprecian la inundación de la superficie del terreno (LSI) por el agua de mar. Se aplica un método analítico simple para evaluar cuantitativamente la influencia y la importancia de LSI sobre los problemas de SLR–SWI bajo condiciones idealizadas. Los resultados demuestran que la LSI induce significativamente en SWI más extensas, con penetración tierra adentro de hasta un orden de magnitud más grande que en el peor de los casos, comparado con los efectos de los cambios de presión en la línea de costa en acuíferos costeros no confinados con parámetros realistas. El trabajo también esboza algunos de los desafíos de investigación que restan en áreas relacionados, concluyendo que los impactos de LSI, entre otras cuestiones importantes en relación a los problemas SLR–SWI, no han sido evaluados, incluyendo los efectos de las heterogeneidades del acuífero, tridimensionalidad del mundo real y las medidas de mitigación.

Quão importante é o impacte das inundações sobre a superfície do solo na intrusão salina causada pela subida do nível do mar?

Resumo

A influência da elevação do nível do mar (ENM) na intrusão salina (IS) tem sido objeto de várias publicações, as quais consideram coletivamente uma gama de relações funcionais dentro de vários cenários hidrogeológicos e de ENM. A maior parte das análises recentes mais generalizadas de IS sob ENM negligenciam a inundação da superfície do solo (ISS) pela água marinha. É aplicado um método analítico simples para calcular quantitativamente a influência e importância da ISS nos problemas de ENM-IS sob condições ideais. Os resultados demonstram que a ISS induz uma IS significativamente mais extensa, com uma penetração continental até uma ordem de magnitude maior no pior dos casos, quando comparada com os efeitos das alterações de pressão na linha de costa em aquíferos livres costeiros com parâmetros realistas. O documento também enfatiza alguns dos restantes desafios da investigação em áreas similares, concluindo que os impactes da ISS estão entre outras questões importantes para a investigação relacionada com os problemas de ENM-IS que não foram ainda abordados, incluindo os efeitos das heterogeneidades dos aquíferos, a tridimensionalidade do mundo real e as medidas de mitigação.

Notes

Acknowledgements

The authors wish to thank Peta Jacobsen and Davood Mahmoodzadeh for their contributions to artwork. This work was funded in part by the National Centre for Groundwater Research and Training, a collaborative initiative of the Australian Research Council and the National Water Commission.

References

  1. Chang SW, Clement TP, Simpson MJ, Lee KK (2011) Does sea-level rise have an impact on saltwater intrusion? Adv Water Resour 34(10):1283–1291CrossRefGoogle Scholar
  2. Chui TFM, Terry JP (2012) Modeling fresh water lens damage and recovery on atolls after storm-wave washover. Ground Water 50(3):412–420CrossRefGoogle Scholar
  3. Custodio E, Bruggeman GA (1987) Groundwater problems in coastal areas. Studies and reports in hydrology 45. United Nations Educational, Scientific and Cultural Organization, Paris, 596 ppGoogle Scholar
  4. de Louw PGB, Eeman S, Siemon B, Voortman BR, Gunnink J, Van Baaren ES, Oude Essink GHP (2011) Shallow rainwater lenses in deltaic areas with saline seepage. Hydrol Earth Syst Sci 15:3659–3678CrossRefGoogle Scholar
  5. Falkland A (1991) Hydrology and water resources of small Islands: a practical guide. A contribution to the International Hydrological Programme. United Nations Educational, Scientific and Cultural Organization, Paris, 435 ppGoogle Scholar
  6. Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Chang 2(5):342–345CrossRefGoogle Scholar
  7. Feseker T (2007) Numerical studies on saltwater intrusion in a coastal aquifer in northwestern Germany. Hydrogeol J 15(2):267–279CrossRefGoogle Scholar
  8. Illangasekare T, Tyler SW, Clement TP, Villholth KG, Perera APGRL, Obeysekera J, Gunatilaka A, Panabokke CR, Hyndman DW, Cunningham KJ, Kaluarachchi JJ, Yeh WWG, Van Genuchten MT, Jensen K (2006) Impacts of the 2004 tsunami on groundwater resources in Sri Lanka. Water Resour Res 42:W05201. doi: 10.1029/2006WR004876 CrossRefGoogle Scholar
  9. IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 976 ppGoogle Scholar
  10. Kooi H, Groen J (2001) Offshore continuation of coastal groundwater systems: predictions using sharp-interface approximations and variable-density flow modeling. J Hydrol 246:19–35CrossRefGoogle Scholar
  11. Kooi H, Groen J, Leijnse A (2000) Modes of seawater intrusion during transgressions. Water Resour Res 36(12):3581–3590CrossRefGoogle Scholar
  12. Laattoe T, Werner AD, Simmons CT (2013) Seawater intrusion under current sea-level rise: Processes accompanying coastline transgression, chap 9. In: Wetzelhuetter C (ed) Groundwater in the coastal zones of Asia-Pacific, Series: Coastal Research Library, vol 7, Springer, HeidelbergGoogle Scholar
  13. Loaiciga HA, Pingel TJ, Garcia ES (2012) Sea water intrusion by sea-level rise: scenarios for the 21st century. Ground Water 50(1):37–47CrossRefGoogle Scholar
  14. Moe H, Hossain R, Fitzgerald R, Banna M, Mushtaha A, Yaqubi A (2001) Application of 3-dimensional coupled flow and transport model in the Gaza Strip, First International Conference on Saltwater Intrusion and Coastal Aquifers-Monitoring, Modeling, and Management, Essaouira, Morocco. April 23–25, 2001Google Scholar
  15. Oude Essink GHP, Van Baaren ES, de Louw PGB (2010) Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res 46:W00F04. doi: 10.1029/2009WR008719 CrossRefGoogle Scholar
  16. Revell DL, Battalio R, Spear B, Ruggiero P, Vandever J (2011) A methodology for predicting future coastal hazards due to sea-level rise on the California coast. Clim Chang 109(1):251–276CrossRefGoogle Scholar
  17. Sherif MM, Singh VP (1999) Effect of climate change on sea water intrusion in coastal aquifers. Hydrol Processes 13(8):1277–1287CrossRefGoogle Scholar
  18. Strack ODL (1976) A single-potential solution for regional interface problems in coastal aquifers. Water Resour Res 12(6):1165–1174CrossRefGoogle Scholar
  19. Terry JP, Falkland AC (2010) Responses of atoll freshwater lenses to storm-surge overwash in the Northern Cook Islands. Hydrogeol J 18(3):749–759CrossRefGoogle Scholar
  20. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci USA 106(51):21527–21532CrossRefGoogle Scholar
  21. Wada Y, Van Beek LPH, Van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20):L20402. doi: 10.1029/2010GL044571 CrossRefGoogle Scholar
  22. Watson TA, Werner AD, Simmons CT (2010) Transience of seawater intrusion in response to sea-level rise. Water Resour Res 46(12):W12533. doi: 10.1029/2010WR009564 CrossRefGoogle Scholar
  23. Webb MD, Howard KWF (2011) Modeling the transient response of saline intrusion to rising sea-levels. Ground Water 49(4):560–569CrossRefGoogle Scholar
  24. Werner AD, Gallagher MR (2006) Characterisation of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modeling. Hydrogeol J 14:1452–1469CrossRefGoogle Scholar
  25. Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47(2):197–204CrossRefGoogle Scholar
  26. Werner AD, Alcoe DW, Ordens CM, Hutson JL, Ward JD, Simmons CT (2011) Current practice and future challenges in coastal aquifer management: flux-based and trigger-level approaches with application to an Australian case study. Water Resour Manag 25(7):1831–1853CrossRefGoogle Scholar
  27. Werner AD, Ward JD, Morgan LK, Simmons CT, Robinson NI, Teubner MD (2012) Vulnerability indicators of sea water intrusion. Ground Water 50(1):48–58CrossRefGoogle Scholar
  28. Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26CrossRefGoogle Scholar
  29. Zulfic D, Harrington N, Evans S (2007) Uley basin groundwater modelling project, vol 2: groundwater flow model. Department of Water, Land and Biodiversity Conservation, Report DWLBC 2007/04, Government of South Australia, Adelaide, 128 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Behzad Ataie-Ashtiani
    • 1
    • 2
    Email author
  • Adrian D. Werner
    • 1
    • 2
  • Craig T. Simmons
    • 1
    • 2
  • Leanne K. Morgan
    • 1
    • 2
  • Chunhui Lu
    • 1
    • 2
  1. 1.National Centre for Groundwater Research & TrainingFlinders UniversityAdelaideAustralia
  2. 2.School of the EnvironmentFlinders UniversityAdelaideAustralia

Personalised recommendations