Advertisement

Hydrogeology Journal

, Volume 21, Issue 7, pp 1393–1412 | Cite as

Iron-hydroxide clogging of public supply wells receiving artificial recharge: near-well and in-well hydrological and hydrochemical observations

  • Diego A. Bustos Medina
  • Gerard A. van den Berg
  • Boris M. van Breukelen
  • Maria Juhasz-Holterman
  • Pieter J. Stuyfzand
Paper

Abstract

Clogging of water wells by iron-hydroxide incrustations due to mixing of anoxic and oxic groundwater is a common well-ageing problem. The relation between well operation (on and off), the spatial and temporal variations in hydrochemistry outside and inside a supply well, and the distribution of clogging iron-hydroxides were studied in an artificial recharge well field in the Netherlands. Camera inspection, high-resolution multi-level water sampling outside the well and detailed in-well pH/EC/O2 profiles revealed remarkable patterns. During pumping, the top of the upper well screen abstracted oxic filtrate, although the larger part of the in-well water column was anoxic. The column rapidly turned oxic after shutdown due to a downward short-circuiting of oxic water via the well. Within 15 d it became anoxic due to the slow advance of anoxic lake filtrate created by local changes in flow direction as the neighboring wells continued to pump. Severe clogging occurred where the oxic filtrate entered the well, while half-clogging of the upper well screen occurred due to less inflow of oxic filtrate on the lake side. Transport of iron flocs and bacterial slimes after shutdown seemed to clog the lower part of the well screen. Frequent on/off switching should be avoided in iron-clogged wells.

Keywords

Water supply The Netherlands Hydrochemistry Iron-hydroxides Well clogging 

Occlusion par de l’hydroxyde de fer de puits d’alimentation publique recevant une recharge artificielle : observations hydrologiques et hydrochimiques à l’extérieur et à l’intérieur du puits

Résumé

L’occlusion de puits par des incrustations d’hydroxyde de fer générées par le mélange d’eau anoxique et d’eau riche en oxygène est un problème courant de vieillissement des puits. La relation entre le fonctionnement du puits (par intermittence), les variations spatiales et temporelles de l’hydrogéochimie à l’extérieur et à l’intérieur du puits d’alimentation et la répartition des hydroxydes de fer qui l’obstruent ont été étudiées dans un champ de puits de recharge artificielle aux Pays Bas. L’inspection par caméra, l’échantillonnage de l’eau à des niveaux précis multiples à l’extérieur du puits et des profils détaillés de pH/EC/O2 à l’intérieur ont révélé des configurations remarquables. Pendant le pompage, le haut de la crépine supérieure du puits extrayait une eau d’infiltration oxygénée, alors que la plus grande partie de la colonne d‘eau à l’intérieur du puits était anoxique. La colonne liquide s’est rapidement oxygénée après l’arrêt du pompage en raison du reflux direct de haut en bas dans le puits de l’eau riche en oxygène. En 15 jours, elle est devenue anoxique à la suite de la lente avancée d’une infiltration pauvre en oxygène venue d’un lac, causée par des changements locaux de la direction d’écoulement à un moment où les puits voisins continuaient à pomper. Une occlusion sévère est survenue au point où l’infiltration oxygénée a pénétré dans le puits, tandis qu’une demi-occlusion de la crépine supérieure du puits se produisait à la suite d’une intrusion moindre de l’infiltration oxygénée du côté du lac. La migration des flocs ferrugineux et des boues bactériennes après l’arrêt semblait obstruer la partie basse de la crépine du puits. Des démarrages et arrêts fréquents devraient être évités dans les puits obstrués par le fer.

Obstrucción por hidróxido de hierro de los pozos de abastecimiento público que reciben recarga artificial: observaciones hidrológicas e hidroquímicas cercanas y dentro de los pozos

Resumen

La obstrucción de pozos de agua por incrustaciones de hidróxido de hierro debido a la mezcla de agua subterránea anóxica y óxica es un problema común del envejecimiento de los pozos. Se estudiaron las relaciones entre la operación (encendido y apagado), las variaciones espaciales y temporales en la hidroquímica dentro y fuera de un pozo de abastecimiento, y la distribución de la obstrucción del hidróxido de hierro en un campo de pozos de recarga artificial en Holanda. Las inspecciones por cámaras, muestreos de agua multinivel de alta resolución fuera del pozo y perfiles detallados dentro del pozo de pH/EC/O2 revelaron los patrones destacables. Durante en bombeo, el tope de la parte superior del filtro del pozo extrajo filtrados óxicos, aunque la mayor parte de la columna de agua dentro del pozo era anóxica. La columna rápidamente se convirtió en óxica después de una parada debido a un breve circuito descendente de agua óxica a través del pozo. Dentro de los 15 días se convirtió en anóxica debido al lento avance de la filtración del lago anóxico creado por cambios locales en la dirección de flujo a medida que los pozos vecinos continuaban el bombeo. Las obstrucciones severas ocurrieron cuando el filtrado óxico entró en el pozo, mientras que obstrucciones medias del filtro superior de la parte superior del pozo ocurrieron debido a un menor influjo del filtrado óxico hacia la margen del lago. El transporte de flóculos de hierro y el fango bacteriano después de la parada parecieron obstruir la parte inferior del filtro del pozo. Se debe evitar un frecuente cambio de encendido y apagado en los pozos obstruidos por el hierro.

人工补给的公共供水井中铁-氢氧化物的堵塞:井附近和井内水文和水化学观测

摘要

含氧和缺氧地下水的混合造成井中铁-氢氧化物水垢水堵塞是一种常见的水井老化问题。本文对荷兰一个人工补给井场的井(关机、开启)运行之间的关系、供水井内外空间和时间上的变化、以及铁-氢氧化物堵塞的分布进行了研究。摄像机检查、高分辨率多层次的井外取样和详细的井内pH、EC、O2剖面揭示了值得注意的模式。在抽水期间,尽管井内水柱大部分缺氧,但水井滤水管上部的顶部抽取了含氧滤液。停止抽水后,由于通过水井的含氧水向下的短路循环,水柱迅速变为含氧。随着附近水井继续抽水,水流方向的局部变化造成的缺氧湖泊滤液缓慢移动,15天之内,水变为缺氧。在含氧滤液进入水井的地方,出现了严重的堵塞,而水井滤水管上部出现半堵塞,这是因为湖泊边的含氧滤液的流入较少。停车抽水后铁屑和细菌黏质的运移似乎堵塞了水滤水管的下部。在铁堵塞的水井中应避免频繁的开/停抽水。

Colmatação com hidróxidos de ferro de furos de abastecimento público que recebem recarga artificial: observações hidrogeológicas e hidroquímicas na vizinhança e no interior do furo

Resumo

A colmatação de furos de água por incrustações de hidróxido de ferro, devido à mistura de água subterrânea anóxica e óxica, é um problema de envelhecimento de furos bastante comum. Num campo de recarga artificial de furos na Holanda, foram estudadas a relação entre a exploração do furo (ligar e desligar), as variações espaciais e temporais na hidroquímica no interior de um furo de abastecimento e nas suas vizinhanças e a distribuição da colmatação por hidróxidos de ferro. A inspeção através de câmara, a amostragem de água multinível de alta resolução na vizinhança do furo e perfis detalhados de pH/EC/O2 no interior do furo revelaram padrões notáveis. Durante o bombeamento, o topo do ralo superior produziu filtrado óxico, apesar da maior parte da coluna de água no furo ser anóxica. Após a paragem, a coluna de água tornou-se rapidamente óxica, devido a um pequeno circuito descendente de água óxica através do furo. Ao fim de 15 dias, o furo tornou-se anóxico, devido ao avanço lento do filtrado anóxico de um lago, motivado por alterações locais na direção do fluxo pelo fato dos furos vizinhos continuarem em exploração. Ocorreu colmatação grave quando o filtrado óxico entrou no furo, enquanto no ralo superior do furo ocorreu colmatação parcial, devido à menor afluência de filtrado óxico do lado do lago. Após a paragem do furo, o transporte de flocos de ferro e limos baterianos parecia obstruir a parte inferior do ralo. Em furos colmatados por ferro devem ser evitadas as paragens e arranques frequentes.

Notes

Acknowledgements

We are grateful to water supply company Limburg (WML); its field team, Sjaak Kleuskens and Har Peeters (for their continuous support in the field), Alwin Hubeek (WML) for the supply of historical data, hydrological Microfem calculations and detailed knowledge of well field Heel and all other WML-employees of the operation team which were on standby when necessary. We acknowledge the support and analytical work of John Visser at the Water laboratory of VU University Amsterdam. This work was performed within the TTIW-cooperation framework of Wetsus, centre of excellence for sustainable water technology (www.wetsus.nl). Wetsus is funded by the Dutch Ministry of Economic Affairs. The authors would also like to thank the members of the “Well Management Optimization” theme of the joint water sector research program (BTO) for their financial support and valuable discussions. MODFLOW modeling work was largely carried out in cooperation with Philip Visser (KWR). Matthijs Bonte is acknowledged for supplying Eq. (1). We thank Dr. Georg Houben, Andrea Herch and a third anonymous reviewer for their valuable contributions.

Supplementary material

10040_2013_1005_MOESM1_ESM.pdf (815 kb)
Figure ESM1 (PDF 815 kb)

References

  1. Applin KR, Zhao N (1989) The kinetics of Fe(II) oxidation and well screen encrustation. Ground Water 27:168–174CrossRefGoogle Scholar
  2. Bustos Medina D, Leunk I (2012) Comparative study of oxygen optodes (No. BTO-2012.218(s)). KWR Watercycle Research Institute, Nieuwegein, The NetherlandsGoogle Scholar
  3. Cornell RM, Schwertmann U (1997) The iron oxides, 1st edn. Wiley, Chichester, UKGoogle Scholar
  4. Cullimore DR (1999) Microbiology of well biofouling. Lewis, Boca Raton, FLGoogle Scholar
  5. de Zwart AH (2007) Investigation of clogging processes in unconsolidated aquifers near water supply wells. PhD Thesis, Technical University Delft, The NetherlandsGoogle Scholar
  6. Dogramaci SS, Herczeg AL (2002) Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. J Hydrol 262:50–67CrossRefGoogle Scholar
  7. Einarson MD, Cherry JA (2002) A New multilevel ground water monitoring system using multichannel tubing. Ground Water Monit Remediat 22:52–65CrossRefGoogle Scholar
  8. Ford HW (1979) Characteristics of Slime and ochre in drainage and irrigation systems. Trans ASABE 22:1093–1096Google Scholar
  9. Gino E, Starosvetsky J, Kurzbaum E, Armon R (2010) Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium. Environ Sci Technol 44:3123–3129CrossRefGoogle Scholar
  10. Hanert HH (2006) The genus Gallionella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York pp 990–995CrossRefGoogle Scholar
  11. Hasselbarth U, Ludeman D (1972) Biological incrustation of wells due to mass development of iron and manganese bacteria. Water Treat Examination 21:20–29Google Scholar
  12. Hecht H, Kölling M (2001) A low-cost optode-array measuring system based on 1 mm plastic optical fibers: new technique for in situ detection and quantification of pyrite weathering processes. Sensors Actuators B Chem 81:76–82CrossRefGoogle Scholar
  13. Heidel S (1965) Dissolved oxygen and iron in shallow wells at salisbury, MD. J Am Water Works Assoc 57:239–244Google Scholar
  14. Houben GJ (2003) Iron oxide incrustations in wells, part 1: genesis, mineralogy and geochemistry. Appl Geochem 18:927–939CrossRefGoogle Scholar
  15. Houben GJ (2004) Modeling the buildup of iron oxide encrustations in wells. Ground Water 42:78–82CrossRefGoogle Scholar
  16. Houben GJ (2006) The influence of well hydraulics on the spatial distribution of well incrustations. Ground Water 44:668–675Google Scholar
  17. Houben G, Treskatis C (2007) Water well rehabilitation and reconstruction. McGraw-Hill, New YorkGoogle Scholar
  18. Houben GJ, Weihe U (2010) Spatial distribution of incrustations around a water well after 38 years of use. Ground Water 48:53–58CrossRefGoogle Scholar
  19. Howsam P (1990) Water wells: monitoring, maintenance, rehabilitation. Proceedings of the International Groundwater Engineering Conference held at Cranfield Institute of Technology, England, 6–8 September 1990. Taylor and Francis, LondonGoogle Scholar
  20. Hubeek A (2010) Aanpassingen grondwatermodel Heel. [Adjustments to geohydrological model Heel]. Report no. WML 6746. WML, Maastricht, The NetherlandsGoogle Scholar
  21. Johnston MW, Williams JS (2006) Field comparison of optical and clark cell dissolved oxygen sensors in the Tualatin River, Oregon, 2005. US Geol Surv Open-File Rep 2006–1047Google Scholar
  22. Kautsky H (1939) Quenching of luminescence by oxygen. Trans Faraday Soc 35:216–219CrossRefGoogle Scholar
  23. KIWA and WML (1997) Geohydrologische ontwerpuitgangspunten ten behoeve van voorontwerp [Geohydrological design start points required for an initial design]. Internal report KOA 97.155, Nieuwegein, The NetherlandsGoogle Scholar
  24. Klimant I, Meyer V, Kuhl M (1995) Fiber-optic oxygen microsensors: a new tool in aquatic biology. Limnol Oceanogr 40:1159–1165CrossRefGoogle Scholar
  25. Kobus EJ, Vlasblom WJ (1975) Putverstopping door ijzerneerslagen te Castricum [Well clogging by iron precipitates at Castricum]. No. 38. KIWA, Rijswijk, The NetherlandsGoogle Scholar
  26. Larroque F, Franceschi M (2010) Impact of chemical clogging on de-watering well productivity: numerical assessment. Environ Earth Sci 64:119–131CrossRefGoogle Scholar
  27. Massmann G, Nogeitzig A, Taute T, Pekdeger A (2007) Seasonal and spatial distribution of redox zones during lake bank filtration in Berlin, Germany. Environ Geol 54:53–65CrossRefGoogle Scholar
  28. Mendizabal I, Stuyfzand PJ (2009) Guidelines for interpreting hydrochemical patterns in data from public supply well fields and their value for natural background groundwater quality determination. J Hydrol 379:151–163CrossRefGoogle Scholar
  29. Ralph DE, Stevenson JM (1995) The role of bacteria in well clogging. Water Res 29:365–369CrossRefGoogle Scholar
  30. Rumbaugh J, Rumbaugh D (1996) Guide to using groundwater vistas: advanced model design & analysis. Software guide. Environmental Simulations, Herndon, VAGoogle Scholar
  31. Stuetz RM, McLaughlan RG (2004) Impact of localised dissolved iron concentrations on the biofouling of environmental wells. Water Sci Technol 49:107–113Google Scholar
  32. Stuyfzand PJ (2007) Naar een effectievere diagnose, therapie en preventie van chemische put- en Drainverstopping [Towards a more effective diagnosis, therapy and prevention of chemical clogging of wells and drains]. H2O 40(8):44–47Google Scholar
  33. Stuyfzand PJ (2011) Hydrogeochemical processes during riverbank filtration and artificial recharge of polluted surface waters: zonation, identification, and quantification. In: Shamrukh M (ed) Riverbank filtration for water security in desert countries. Springer, Dordrecht, The Netherlands, pp 97–128CrossRefGoogle Scholar
  34. Stuyfzand PJ, Swierstra W, Juhas-Holterman M (2007) Is the calcite saturation index of the raw water of pumping station Heel decreasing? Internal report no. KWR 07.046, KWR Watercycle Research Institute, Nieuwegein, The NetherlandsGoogle Scholar
  35. Swierstra W (2010) Cleaning of the lake bank at Reut and Langeven, costs and benefits. No. WML 6739, WML, Maastricht, The NetherlandsGoogle Scholar
  36. Tamura H, Goto K, Nagayama M (1976) Effect of anions on the oxygenation of ferrous ion in neutral solutions. J Inorg Nucl Chem 38:113–117CrossRefGoogle Scholar
  37. Tengberg A, Hovdenes J, Andersson HJ, Brocandel O, Diaz R, Hebert D, Arnerich T, Huber C, Körtzinger A, Khripounoff A (2006) Evaluation of a lifetime-based optode to measure oxygen in aquatic systems. Limnol Oceanogr Methods 4:7–17CrossRefGoogle Scholar
  38. TNO-NITG (Geological Survey of the Netherlands) (2011) REGIS II. Regionaal Geohydrologisch Informatie Systeem [Regional geohydrological information system]. TNO-NITG, Utrecht, The NetherlandsGoogle Scholar
  39. Tuhela L, Carlson L, Tuovinen OH (1992) Ferrihydrite in water wells and bacterial enrichment cultures. Water Res 26:1159–1162CrossRefGoogle Scholar
  40. Tuhela L, Carlson L, Tuovinen OH (1997) Biogeochemical transformations of Fe and Mn in oxic groundwater and well water environments. J Environ Sci Health Part A Environ Sci Eng Toxicol 32:407–426CrossRefGoogle Scholar
  41. Tyrrel SF, Howsam P (1994) Field observations of iron biofouling in water supply boreholes. Biofouling 8:65–69CrossRefGoogle Scholar
  42. van Beek CGEM (1989) Rehabilitation of clogged discharge wells in the Netherlands. Q J Eng Geol Hydrogeol 22:75–80CrossRefGoogle Scholar
  43. van Beek CGEM, Breedveld R, Stuyfzand PJ (2009a) Preventing two types of well clogging. J Am Water Works Assoc 101:125–134Google Scholar
  44. van Beek CGEM, Breedveld R, Juhász-Holterman M, Oosterhof A, Stuyfzand PJ (2009b) Cause and prevention of well bore clogging by particles. Hydrogeol J 17:1877–1886CrossRefGoogle Scholar
  45. Walter DA (1997) Geochemistry and microbiology of iron-related sell-screen encrustation and aquifer biofouling in Suffolk county, Long Island, New York US Geol Surv Water Resour Invest Rep 97–4032Google Scholar
  46. Weidner C, Henkel S, Lorke S, Rüde TR, Schüttrumpf H, Klauder W (2012) Experimental modelling of chemical clogging processes in dewatering wells. Mine Water Environ 31:242–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Diego A. Bustos Medina
    • 1
    • 2
  • Gerard A. van den Berg
    • 1
  • Boris M. van Breukelen
    • 2
  • Maria Juhasz-Holterman
    • 3
  • Pieter J. Stuyfzand
    • 1
    • 2
  1. 1.KWR Watercycle Research InstituteNieuwegeinThe Netherlands
  2. 2.Department of Earth SciencesVU University AmsterdamAmsterdamThe Netherlands
  3. 3.Water Utility Company LimburgMaastrichtThe Netherlands

Personalised recommendations