Advertisement

Hydrogeology Journal

, Volume 21, Issue 6, pp 1373–1383 | Cite as

Identification of potential sites for aquifer storage and recovery (ASR) in coastal areas using ASR performance estimation methods

  • Koen G. Zuurbier
  • Mark Bakker
  • Willem Jan Zaadnoordijk
  • Pieter J. Stuyfzand
Report

Abstract

Performance of freshwater aquifer storage and recovery (ASR) systems in brackish or saline aquifers is negatively affected by lateral flow, density effects, and/or dispersive mixing, causing ambient groundwater to enter ASR wells during recovery. Two recently published ASR performance estimation methods are applied in a Dutch coastal area, characterized by brackish-to-saline groundwater and locally high lateral-flow velocities. ASR performance of existing systems in the study area show good agreement with the predicted performance using the two methods, provided that local vertical anisotropy ratios are limited (<3). Deviations between actual and predicted ASR performance may originate from simplifications in the conceptual model and uncertainties in the hydrogeological and hydrochemical input. As the estimation methods prove suitable to predict ASR performance, feasibility maps are generated for different scales of ASR to identify favorable ASR sites. Successful small-to-medium-scale ASR varies spatially in the study area, emphasizing the relevance of reliable a priori spatial mapping.

Keywords

Aquifer storage and recovery Recovery efficiency Coastal aquifers Freshwater management The Netherlands 

Identification de sites potentiels pour stockage en aquifère et récupération (ASR) dans les régions côtières en utilisant les méthodes d’estimation de la performance de l’ASR

Résumé

La performance des dispositifs de stockage souterrain et récupération (ASR) d’eau douce dans les aquifères salés ou saumâtres est pénalisée par l’écoulement latéral, les effets de densité et/ou le mélange dispersif, ce qui cause l’intrusion d’eau connée dans les puits d’ASR pendant la récupération. Deux méthodes d’estimation de la performance de l’ASR récemment publiées sont appliquées à une zone côtière de Hollande caractérisée par des eaux souterraines saumâtres à salées et localement des vitesses d’écoulement latérales élevées. La performance ASR de dispositifs existants dans la zone d’étude montre un bon accord avec la performance prévue avec les deux méthodes, tant que les rapports d’anisotropie verticale locale sont limités (<3). Les écarts entre la performance ASR prévue et observée pourraient avoir pour origine des simplifications du modèle conceptuel et des incertitudes dans les paramètres d’entrée hydrogéologiques et hydrochimiques. Comme les méthodes d’estimation sont adaptées à la prévision de la performance de l’ASR, des cartes de faisabilité sont établies pour des dispositifs d’ASR de différents volumes afin d’identifier des sites ASR favorables. Les dispositifs d’ASR de petit à moyen volume efficaces varient dans le domaine de la zone d’étude, ce qui souligne la pertinence d’une cartographie spatiale préalable fiable.

Identificación de sitios potenciales para el almacenamiento y recuperación del acuífero (ASR) en áreas costeras usando los métodos ASR de estimación de rendimiento

Resumen

El rendimiento de los sistemas de recuperación y almacenamiento (ASR) de acuíferos de agua dulce en acuíferos salobres o salino es negativamente afectado por el flujo lateral, los efectos de densidad y / o mezcla dispersiva, lo cual causa que el agua subterránea ambiente entre a pozos ASR durante la recuperación. Se aplican dos métodos de estimación de rendimiento ASR recientemente publicados a un área costera holandesa., caracterizada por agua subterránea salobre a salina y altas velocidades locales de flujo lateral. Los rendimientos ASR de sistemas existentes en el área de estudio muestran un buen acuerdo con el rendimiento predicho usando los dos métodos, siempre y cuando que las tasas anisotropía vertical local sean limitadas (<3). Las desviaciones entre los rendimientos reales y los predichos por ASR pueden originarse a partir simplificaciones en el modelo conceptual e incertidumbres en las entradas hidrogeológicas e hidroquímicas. Como los métodos de estimación muestran apropiados rendimientos predichos por ASR, se generan mapas de factibilidad para distintas escalas de ASR para identificar sitios ASR favorables. Los ASR exitosos de media a pequeña escala varían espacialmente en el área de estudio, enfatizando la relevancia de un mapeo espacial confiable a priori.

在沿海地区使用ASR性能估算法识别含水层储存和恢复潜在的场地

摘要

淡水含水层的存储和恢复(ASR)系统在微咸水或咸水含水层中受到侧向流、密度的影响和/或分散混合的负面影响,在恢复中造成周围地下水进入ASR井。在荷兰沿海地区,最近发表的两篇有关ASR性能估算法应用于微咸到咸水地下水和局部高侧向流动速度的地区。在研究区内,现有系统的ASR性能显示与预测的性能一致,在当地垂直各向异性率不超过 < 3的条件下。实际的与预测的性能之间的偏差可能源自简化概念模型以及在水文地质、水化学输入的不确定因素。随着评估法可以预测ASR性能,不同比例尺的ASR可行性地图可帮助识别好的ASR场地。在研究区内,成功的小型 -中型的ASR场地空间的变化,强调可靠的先天的特殊标测的相关性。

Identificação de locais potenciais para armazenamento e recuperação em aquíferos (ASR) em áreas costeiras usando métodos estimativos de desempenho de ASR

Resumo

O desempenho de sistemas de armazenamento e recuperação de água doce em aquíferos (ASR) salobros ou salinos é afetado negativamente por fluxo lateral, efeitos de densidade e/ou mistura dispersiva, causando a entrada de água subterrânea ambiente nos poços ASR durante a extração. Dois métodos de estimação de desempenho do ASR recentemente publicados foram aplicados numa área costeira holandesa, caraterizada por água subterrânea salobra a salina e, localmente, por velocidades elevadas de fluxo lateral. O desempenho do ASR dos sistemas existentes na área de estudo mostram uma boa correlação com o desempenho previsto quando se usam os dois métodos, desde que os índices de anisotropia vertical sejam limitados (<3). Os desvios entre os desempenhos de ASR reais e os previstos podem ter origem nas simplificações do modelo concetual e nas incertezas dos dados hidrogeológicos e hidrogeoquímicos iniciais. Como os métodos de estimação provam ser adequados para prever o desempenho do ASR, mapas de viabilidade são gerados para diferentes escalas de ASR, a fim de identificar locais favoráveis ao ASR. O sucesso a pequena a média escala varia espacialmente na área de estudo, enfatizando a importância de um mapeamento espacial confiável feito a priori.

Notes

Acknowledgements

This research was funded by the Knowledge for Climate research programme as part of the theme ‘Climate Proof Freshwater Supply’ of this program. We thank Dr. Gualbert Oude-Essink for providing the dataset of the chloride distribution in the study area.

References

  1. Bakker M (2010) Radial Dupuit interface flow to assess the aquifer storage and recovery potential of saltwater aquifers. Hydrogeol J 18:107–115. doi: 10.1007/s10040-009-0508-1 CrossRefGoogle Scholar
  2. Barends BJ, Brouwer FJJ, Schröder FH (1995) Land subsidence, natural causes, measuring techniques, the Groningen gasfields. Balkema, Rotterdam, The NetherlandsGoogle Scholar
  3. Bear J, Jacobs M (1965) On the movement of water bodies injected into aquifers. J Hydrol 3:37–57CrossRefGoogle Scholar
  4. Buscheck TA, Doughty C, Tsang CF (1983) Prediction and analysis of a field experiment on a multilayered aquifer thermal energy storage system with strong buoyancy flow. Water Resour Res 19:1307–1315. doi: 10.1029/WR019i005p01307 CrossRefGoogle Scholar
  5. Busschers FS, Weerts HJT, Wallinga J, Cleveringa P, Kasse C, De Wolf H, Cohen KM (2005) Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits: fluvial response to climate change, sea-level fluctuation and glaciation. Neth J Geosci 84:25–41Google Scholar
  6. Ceric A, Haitjema H (2005) On using simple time-of-travel capture zone delineation methods. Ground Water 43:408–412. doi: 10.1111/j.1745-6584.2005.0035.x CrossRefGoogle Scholar
  7. de Louw PGB, Oude Essink GHP, Stuyfzand PJ, van der Zee SEATM (2010) Upward groundwater flow in boils as the dominant mechanism of salinization in deep polders, The Netherlands. J Hydrol 394:494–506. doi: 10.1016/j.jhydrol.2010.10.009 CrossRefGoogle Scholar
  8. Dillon P (2005) Future management of aquifer recharge. Hydrogeol J 13:313–316. doi: 10.1007/s10040-004-0413-6 CrossRefGoogle Scholar
  9. Dillon P, Pavelic P, Toze S, Rinck-Pfeiffer S, Martin R, Knapton A, Pidsley D (2006) Role of aquifer storage in water reuse. Desalination 188:123–134CrossRefGoogle Scholar
  10. Esmail OJ, Kimbler OK (1967) Investigation of the technical feasibility of storing fresh water in saline aquifers. Water Resour Res 3:683–695. doi: 10.1029/WR003i003p00683 CrossRefGoogle Scholar
  11. Hantush MS (1966) Wells in homogeneous anisotropic aquifers. Water Resour Res 2:273–279. doi: 10.1029/WR002i002p00273 CrossRefGoogle Scholar
  12. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: the physical science basis In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the IPCC, New YorkGoogle Scholar
  13. Jones GW, Pichler T (2007) Relationship between pyrite stability and arsenic mobility during aquifer storage and recovery in southwest central Florida. Environ Sci Technol 41:723–730CrossRefGoogle Scholar
  14. Kooi H (2000) Land subsidence due to compaction in the coastal area of The Netherlands: the role of lateral fluid flow and constraints from well-log data. Glob Planet Change 27:207–222CrossRefGoogle Scholar
  15. Kwadijk JCJ, Haasnoot M, Mulder JPM, Hoogvliet MMC, Jeuken ABM, van der Krogt RAA, van Oostrom NGC, Schelfhout HA, van Velzen EH, van Waveren H, de Wit MJM (2010) Using adaptation tipping points to prepare for climate change and sea level rise: a case study in the Netherlands. WIRs Clim Change 1:729–740. doi: 10.1002/wcc.64 CrossRefGoogle Scholar
  16. Ma R, Zheng C (2010) Effects of density and viscosity in modeling heat as a groundwater tracer. Ground Water 48:380–389. doi: 10.1111/j.1745-6584.2009.00660.x CrossRefGoogle Scholar
  17. Maliva RG, Guo W, Missimer TM (2006) Aquifer storage and recovery: recent hydrogeological advances and system performance. Water Environ Res 78:2428–2435CrossRefGoogle Scholar
  18. Meinardi CR (1994) Groundwater recharge and travel times in the sandy regions of the Netherlands. PhD Thesis, Vrije Universiteit, Amsterdam, The NetherlandsGoogle Scholar
  19. Merritt ML (1986) Recovering fresh water stored in saline limestone aquifers. Ground Water 24:516–529. doi: 10.1111/j.1745-6584.1986.tb01031.x CrossRefGoogle Scholar
  20. Misut PE, Voss CI (2007) Freshwater–saltwater transition zone movement during aquifer storage and recovery cycles in Brooklyn and Queens, New York City, USA. J Hydrol 337:87–103CrossRefGoogle Scholar
  21. Molz FJ, Melville JG, Güven O, Parr AD (1983a) Aquifer thermal energy storage: an attempt to counter free thermal convection. Water Resour Res 19:922–930. doi: 10.1029/WR019i004p00922 CrossRefGoogle Scholar
  22. Molz FJ, Melville JG, Parr AD, King DA, Hopf MT (1983b) Aquifer thermal energy storage: a well doublet experiment at increased temperatures. Water Resour Res 19:149–160. doi: 10.1029/WR019i001p00149 CrossRefGoogle Scholar
  23. Negenman AJH, Foppen JWA, Kloosterman FH, Witte JPM, Meijden Rvd, Groen CLG (1996) Landelijke hydrologische systeemanalyse; deelrapport 3: ‘Deelgebied Noord- en Zuid-Holland ten zuiden van het Noordzeekanaal’ [National hydrologic system analysis; report 3: ‘Part of the provinces of North and South Holland, South of the Northsea Canal’, in Dutch]. IGG-TNO, Utrecht, The NetherlandsGoogle Scholar
  24. Oude Essink GHP, van Baaren ES, de Louw PGB (2010) Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res 46:W00F04. doi: 10.1029/2009wr008719 CrossRefGoogle Scholar
  25. Paalman M, Appelman W, Creusen R, Stein N, Raterman B, Voogt W (2012) Vergroten zelfvoorzienendheid watervoorziening Glastuinbouw: Watervraag Glastuinbouw Haaglanden (deel 1) [Enlarging selfsufficient horticultural freshwater supply: greenhouse areas Haaglanden (part 1), in Dutch]. Case Haaglanden Knowledge for Climate, Utrecht, The NetherlandsGoogle Scholar
  26. Pavelic P, Dillon P, Simmons CT (2002) Lumped parameter estimation of initial recovery efficiency during ASR. In: Dillon PJ (ed) Fourth International Symposium on Artificial Recharge (ISAR4). Swerts and Zeitlinger, Adelaide, Australia, pp 285–290Google Scholar
  27. Post VEA (2003) Groundwater salinization processes in the coastal area of the Netherlands due to transgressions during the Holocene. PhD Thesis, Vrije Universiteit, The NetherlandsGoogle Scholar
  28. Prommer H, Stuyfzand PJ (2005) Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer. Environ Sci Technol 39:2200–2209CrossRefGoogle Scholar
  29. Pyne RDG (2005) Aquifer storage recovery: a guide to groundwater recharge through wells, 2nd edn. ASR Systems LLC, Gainesville, FLGoogle Scholar
  30. Schothorst CJ (1977) Subsidence of low moor peat soils in the western Netherlands. Geoderma 17:265–291CrossRefGoogle Scholar
  31. Stuyfzand P, Raat K (2010) Benefits and hurdles of using brackish groundwater as a drinking water source in the Netherlands. Hydrogeol J 18:117–130. doi: 10.1007/s10040-009-0527-y CrossRefGoogle Scholar
  32. TNO-NITG DINOloket (2011) www.dinoloket.nl. Accessed December 2011
  33. Vacher HL, Hutchings WC, Budd DA (2006) Metaphors and models: the ASR bubble in the Floridan Aquifer. Ground Water 44:144–154. doi: 10.1111/j.1745-6584.2005.00114.x CrossRefGoogle Scholar
  34. van den Hurk B, Tank AK, Lenderink G, van Ulden A, van Oldenborgh GJ, Katsman C, van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2007) New climate change scenarios for the Netherlands. Water Sci Technol 56(4):27–33Google Scholar
  35. Wallis I, Prommer H, Simmons CT, Post V, Stuyfzand PJ (2010) Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge. Environ Sci Technol 44:5035–5041. doi: 10.1021/es100463q CrossRefGoogle Scholar
  36. Ward JD, Simmons CT, Dillon PJ (2007) A theoretical analysis of mixed convection in aquifer storage and recovery: how important are density effects? J Hydrol 343:169–186CrossRefGoogle Scholar
  37. Ward JD, Simmons CT, Dillon PJ (2008) Variable-density modelling of multiple-cycle aquifer storage and recovery (ASR): importance of anisotropy and layered heterogeneity in brackish aquifers. J Hydrol 356:93–105CrossRefGoogle Scholar
  38. Ward JD, Simmons CT, Dillon PJ, Pavelic P (2009) Integrated assessment of lateral flow, density effects and dispersion in aquifer storage and recovery. J Hydrol 370:83–99CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Koen G. Zuurbier
    • 1
    • 2
  • Mark Bakker
    • 3
  • Willem Jan Zaadnoordijk
    • 1
    • 3
  • Pieter J. Stuyfzand
    • 1
    • 2
  1. 1.KWR Watercycle Research InstituteNieuwegeinThe Netherlands
  2. 2.Critical Zone Hydrology Group, Department of Earth SciencesVU University AmsterdamAmsterdamThe Netherlands
  3. 3.Water Resources Section, Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations