Advertisement

Hydrogeology Journal

, Volume 21, Issue 6, pp 1169–1171 | Cite as

The return of groundwater quantity: a mega-scale and interdisciplinary “future of hydrogeology”?

  • Tom Gleeson
  • Michael Cardiff
Essay

A series of recent papers suggest groundwater quantity may be returning to prominence in hydrogeology research. The unsustainable depletion of groundwater has been documented on both regional (Rodell et al. 2009; Tiwari et al. 2009; Famiglietti et al. 2011) and global scales (Wada et al. 2010; Konikow 2011; Wada et al. 2012) using data synthesis and the GRACE satellite data. Additionally, how groundwater resources will be impacted by global change remains important but uncertain and difficult to predict (Green et al. 2011; Taylor et al. 2013). Recent discussions on groundwater sustainability have suggested applying cutting-edge sustainability concepts such as multi-generational goal setting and adaptive management to groundwater quantity problems (Gleeson et al. 2010, 2012).

At its core, groundwater quantity is a water budget question of fluxes and stores. The critical applied questions of groundwater quantity are “how much groundwater is available for sustainable use, and what is the...

Keywords

Water supply Hydraulic properties Groundwater recharge/water budget Groundwater management 

Le retour du quantitatif en matière d’eaux souterraines : une “hydrogéologie du futur” de très grande échelle et interdisciplinaire ?

El regreso de la cuantificación del agua subterránea: un “futuro de la hidrogeología” interdisciplinaria y a megaescala?

地下水量问题的回归:超大尺度和跨学科的“水文地质学的未来”

O regresso da quantificação da água subterrânea: um “futuro da hidrogeologia” interdisciplinar e a mega-escala?

Notes

Acknowledgements

This essay was significantly improved by suggestions from M. Sophocleous, S. Gorelick, L. Smith, S. Loheide and G. Ferguson and originally inspired by conversations at the ‘Cutting Edge’ Early Career Geoscientist workshop in June 2012 College of William and Mary, Williamsburg, VA. The workshop is sponsored by the National Association of Geoscience Teachers (NAGT) with funding provided by the National Science Foundation Division of Undergraduate Education. We thank the workshop leaders, NAGT and NSF for this opportunity and encourage other early career hydrogeologists to check out future workshops.

References

  1. Anderson MP (2008) Groundwater. Benchmark Papers in Hydrology Series, IAHS, Wallingford, UKGoogle Scholar
  2. Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38, L03403. doi: 10.1029/2010gl046442 CrossRefGoogle Scholar
  3. Fan Y, Miguez-Macho G, Weaver CP, Walko R, Robock A (2007) Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J Geophys Res 112, D10125Google Scholar
  4. Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation. Water Resour Res 3:623–634CrossRefGoogle Scholar
  5. Garven G (1995) Continental-scale groundwater flow and geologic processes. Annu Rev Earth Planet Sci 23:89–117CrossRefGoogle Scholar
  6. Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Groundwater sustainability strategies. Nature Geosci 3:378–379CrossRefGoogle Scholar
  7. Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, VanderSteen J (2012) Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Ground Water 50:19–26. doi: 10.1111/j.1745-6584.2011.00825.x CrossRefGoogle Scholar
  8. Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405:532–560. doi: 10.1016/j.jhydrol.2011.05.002 CrossRefGoogle Scholar
  9. Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38, L17401. doi: 10.1029/2011gl048604 CrossRefGoogle Scholar
  10. Lemieux JM, Sudicky EA, Peltier WR, Tarasov L (2008) Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J Geophys Res 113Google Scholar
  11. Meinzer O (1923) Outline of groundwater hydrology, with definitions. US Geol Surv Water Suppl Pap 494Google Scholar
  12. Person MA, Raffensperger JP, Ge S, Garven G (1996) Basin-scale hydrogeologic modeling. Rev Geophys 34:61–87CrossRefGoogle Scholar
  13. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002CrossRefGoogle Scholar
  14. Schwartz FW, Fang YC, Parthasarathy S (2005) Patterns of evolution of research strands in the hydrologic sciences. Hydrogeol J 13:25–36. doi: 10.1007/s10040-004-0423-4 CrossRefGoogle Scholar
  15. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation: a global inventory. Hydrol Earth Syst Sci 14:1863–1880. doi: 10.5194/hess-14-1863-2010 CrossRefGoogle Scholar
  16. Taylor RG, Scanlon B, Doll P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh PJF, Holman I, Treidel H (2013) Ground water and climate change. Nature Clim Change 3:322–329. doi: 10.1038/nclimate1744 Google Scholar
  17. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. USGS, Reston, VAGoogle Scholar
  18. Theis CV (1940) The source of water derived from wells. Civ Eng 10:277–280Google Scholar
  19. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36, L18401Google Scholar
  20. Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812CrossRefGoogle Scholar
  21. Voss CI (2005) The future of hydrogeology. Hydrogeol J 13:1–6. doi: 10.1007/s10040-005-0435-8 CrossRefGoogle Scholar
  22. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37, L20402CrossRefGoogle Scholar
  23. Wada Y, van Beek LPH, Bierkens MFP (2012) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48, W00L06. doi: 10.1029/2011wr010562 CrossRefGoogle Scholar
  24. Wörman A, Packman AI, Marklund L, Harvey JW, Stone SH (2007) Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophys Res Lett 34, L07402CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Civil EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of GeosciencesUniversity of Wisconsin - MadisonMadisonUSA

Personalised recommendations