Advertisement

Hydrogeology Journal

, Volume 21, Issue 5, pp 1129–1146 | Cite as

Groundwater resources in the Upper Guadiana Basin (Spain): a regional modelling analysis

  • Ángel Yustres
  • Vicente Navarro
  • Laura Asensio
  • Miguel Candel
  • Beatriz García
Report

Abstract

The sustainability of groundwater resources has been a central issue in the Upper Guadiana Basin (Spain) since two of its primary aquifer units were declared overexploited at the end of the 1990s. Three hydrogeological aquifer units located to the north of the primary aquifers have rarely been studied because of their low economic value, despite a large part of the wetlands of La Mancha Húmeda Biosphere Reserve overlying the Basin. This report presents the foundations upon which conceptual and numerical models of the Upper Guadiana Basin are based. An evaluation of the sustainability of the groundwater use in Upper Guadiana Basin has been also carried out. The effect of five management options and a simplified climatic-change scenario have been considered for the three northern aquifers. A decrease in the net recharge, a change in river–aquifer interactions, and the total abstraction volumes authorised have been identified as the main factors to address in management planning. In addition, the expected recovery in the primary Western Mancha aquifer is shown to have little correlation with the total volume abstracted from the three northern tributary aquifers.

Keywords

Spain Conceptual models Groundwater management Numerical modelling Water-resources conservation 

Ressources en eau souterraine du Bassin Supérieur du Guadiana (Espagne) : une analyse de modélisation régionale

Résumé

La pérennité des ressources en eau souterraine est une question centrale dans le Bassin Supérieur du Guadiana (Espagne) depuis que deux de ses principales unités aquifères ont été déclarées comme surexploitées à la fin des années 1990. Trois unités hydrogéologiques aquifères situées au Nord des aquifères principaux ont rarement été étudiées, en raison de leur faible valeur économique, en dépit du fait qu’une grande part des zones humides de la réserve de biosphère de La Mancha Húmeda recouvre ce bassin. Cet article présente les fondements sur lesquels les modèles conceptuel et numérique du Bassin Supérieur du Guadiana sont basés. Une évaluation de la pérennité de l’utilisation de l’eau souterraine du Bassin Supérieur du Guadiana a aussi été réalisée. L’incidence de cinq options de gestion et d’un scénario simplifié de changement climatique a été considérée pour les trois aquifères du Nord. Une diminution de la recharge nette, un changement des interactions rivière - aquifère et le total des prélèvements autorisés ont été identifiés comme les principaux facteurs à considérer en termes de planification de la gestion. De plus, on montre que la recharge estimée de l’aquifère principal de La Mancha Ouest est peu corrélée avec le volume total prélevé dans les trois aquifères tributaires du Nord.

Recursos de agua subterránea en la Cuenca superior del Guadiana (España): un análisis de modelación regional

Resumen

La sostenibilidad de los recursos de agua subterránea ha sido un tema central en la Cuenca superior del Guadiana (España) puesto que dos de sus unidades primarias acuíferas fueron declaradas sobreexplotadas a fines de 1990. Tres unidades hidrogeológicas acuíferas situadas al norte de los acuíferos primarios han sido raramente estudiados debido a su bajo valor económico, a pesar de que una gran parte de los humedales de la Reserva de la Biósfera de La Mancha Húmeda yacen por encima de la cuenca. Este trabajo presenta los fundamentos sobre los cuales están basados los modelos conceptuales y numéricos de la cuenca superior del Guadiana. También se llevó a cabo una evaluación de la sostenibilidad del uso del agua subterránea en la cuenca superior del Guadiana. Se ha considerado el efecto de cinco opciones de manejo y un escenario simplificado de cambio climático para los tres acuíferos del norte. Se han identificado como los principales factores para guiar la planificación del manejo, la disminución en la recarga neta, un cambio en las interacciones río – acuífero, y el total de la extracción del volumen autorizado. Además, se muestra que la recuperación esperada en el acuífero primario de la Mancha occidental tiene poca correlación con el volumen total extraído de los tres acuíferos tributarios del norte.

Os recursos hídricos subterrâneos na Bacia do Alto Guadiana (Espanha): uma análise de modelação regional

Resumo

A sustentabilidade dos recursos hídricos subterrâneos tem sido uma questão central na Bacia do Alto Guadiana (Espanha), uma vez que duas das suas principais unidades aquíferas foram declaradas sobre-exploradas no final da década de 1990. Três unidades hidrogeológicas localizadas a norte dos principais aquíferos raramente têm sido alvo de estudos devido ao seu baixo valor económico, apesar de grande parte das zonas húmidas da Reserva da Biosfera de La Mancha Húmeda cobrir a Bacia. Este artigo apresenta os fundamentos nos quais se baseiam os modelos conceptuais e numéricos da Bacia do Alto Guadiana. Também se efetuou uma avaliação da sustentabilidade do uso da água subterrânea na bacia. Para os três aquíferos do norte foram considerados os impactos de cinco alternativas de gestão e um cenário simplificado de mudança climática. Identificaram-se os seguintes fatores principais a considerar no planeamento da gestão: uma diminuição da recarga eficaz, uma mudança nas interações rio-aquífero e nos volumes totais de captação autorizados. Além disso, a recuperação prevista no aquífero principal da Mancha Ocidental mostra-se pouco correlacionada com o volume total captado nos três aquíferos tributários no norte.

Notes

Acknowledgements

The authors would like to thank the Confederación Hidrográfica del Guadiana for providing the means and the financial support to carry out this study. The financial support provided by the Spanish Ministry of Education through the FPU Program Grant AP2009-2134 awarded to Laura Asensio is gratefully acknowledged.

References

  1. Acreman M, Almagro J, Alvarez J, Bouraoui F, Bradford R, Bromley J, Croke B, Crooks S, Cruces J, Dolz J, Dunbar M, Estrela T, Fernandez-Carrasco P, Fornes J, Gustard G, Haverkamp R, De La Hera A, Hernández-Mora N, Llamas R, Martinez CL, Papamasorakis J, Ragab R, Sánchez M, Vardavas I, Webb T (2000) Groundwater and river resources programme on a European scale (GRAPES). Technical report to the European Union ENV4–CT95-0186, Institute of Hydrology, Wallingford, UKGoogle Scholar
  2. Aldaya MM, Llamas MR (2009) Water footprint analysis (hydrologic and economic) of the Guadiana River Basin. UNESCO, ParisGoogle Scholar
  3. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO, RomeGoogle Scholar
  4. Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. US Geological Survey, Denver, CO, 86 ppGoogle Scholar
  5. Alvarez-Cobelas M (2006) Groundwater-mediated limnology in Spain. Limnetica 25:107–122Google Scholar
  6. Baldock D, Dwyer J, Sumpsi VJM (2002) Environmental integration and the CAP institute for European environmental, policy. LondonGoogle Scholar
  7. Bredehoeft J (2005) The conceptualization model problem: surprise. Hydrogeol J 13:37–46. doi: 10.1007/s10040-004-0430-5 CrossRefGoogle Scholar
  8. Bromley J, Hodnett M, Cooper JD, Dixon AJ, Young A (1996) Hydrological response to land use change and over-exploitation of water resources in a semi-arid area of Spain. In: Bromley J (ed) EFEDA II: hydrology group. Final report. European Commission, Brussels, pp 1.1–1.62Google Scholar
  9. Bromley J, Cruces J, Acreman M, Martínez L, Llamas MR (2001) Problems of sustainable groundwater management in an area of over-exploitation: the upper Guadiana catchment, central Spain. Int J Water Resour Dev 17:379–396. doi: 10.1080/07900620120065156 CrossRefGoogle Scholar
  10. Carmona G, Varela-Ortega C (2008) Participatory building of a decision support system for adaptive water management in the Upper Guadiana Basin. 12th Congress of the European Association of Agricultural Economists. EAAE 2008, Ghent, Belgium, August 2008Google Scholar
  11. Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222CrossRefGoogle Scholar
  12. Conan C, de Marsily G, Bouraoui F, Bidoglio G (2003) A long-term hydrological modelling of the Upper Guadiana River basin (Spain). Phys Chem Earth 28:193–200. doi: 10.1016/S1474-7065(03)00025-1 CrossRefGoogle Scholar
  13. De Bruijne CH, Andriessen PAM (2002) Far field effects of alpine plate tectonism in the Iberian microplate recorded by fault-related denudation in the Spanish central system. Tectonophysics 349:161–184. doi: 10.1016/S0040-1951(02)00052-5 CrossRefGoogle Scholar
  14. De la Hera A (1993) Ensayo de cuantificación de la conexión hidrogeológica entre el sistema acuífero del Campo de Montiel y el sistema acuífero de la Llanura Manchega [Quantification of the hydrogeoligical connection between the Campo de Montiel and Western Mancha aquifers]. Graduate Thesis, Complutense University of Madrid, SpainGoogle Scholar
  15. De la Hera A (2003) Caracterización de los humedales de la cuenca alta del Guadiana [Wetland characterization in the Upper Guadiana Basin]. In: Coleto C, Martínez-Cortina L, Llamas MR (eds) Conflictos Entre El Desarrollo De Las Aguas Subterráneas Y La Conservación De Los Humedales Fundación Marcelino Botín. IGME, Madrid, pp 165–196Google Scholar
  16. Dominguez A, de Juan JA (2008) Agricultural water management in Castilla-La Mancha (Spain). In: Sorensen ML (ed) Agricultural water management research trends. Nova Science, USA, pp 69–128Google Scholar
  17. Estrela T, Quintas L (1996) A distributed hydrological model for water resources assessment in large basins. In: Proceedings of 1st IWRA International Conference Rivertech 96, Chicago, IL, September 1996, pp 861–868Google Scholar
  18. European Commission (2000) Directive 2000/60/EC of the European parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Communities L 327, 72 ppGoogle Scholar
  19. Florín M, Montes C, Rueda F (1993) Origin, hydrologic functioning, and morphometric characteristics of small, shallow, semiarid lakes (Lagunas) in La Mancha, central Spain. Wetlands 13:247–259. doi: 10.1007/BF03161291 CrossRefGoogle Scholar
  20. Fornés JM (1994) Hidrología de algunas lagunas de Castilla-La Mancha [Hydrology of some wetlands in Castilla-La Mancha]. PhD Thesis, Complutense University of Madrid, SpainGoogle Scholar
  21. Fornés JM, De La Hera Á, Llamas MR (2005) The silent revolution in groundwater intensive use and its influence in Spain. Water Policy 7:253–268Google Scholar
  22. García M (1996) Hidrogeología de Las Tablas de Daimiel y de los Ojos del Guadiana. Bases hidrogeológicas para una clasificación funcional de los humedales ribereños [Hydrogeological framework of the Tablas de Daimiel and Guadiana Springs. Hydroecological fundaments for a functional classification of riverine wetlands]. PhD Thesis, Complutense University of Madrid, SpainGoogle Scholar
  23. Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129. doi: 10.1016/S0022-1694(00)00144-X CrossRefGoogle Scholar
  24. GWA (Guadiana Water Authority) (1996) Establecimiento y cuantificación del intercambio de flujos de aguas subterráneas entre los acuíferos y el río Guadiana aguas abajo del embalse de Peñarroya, término municipal de Argamasilla de Alba (Ciudad Real) [Quantification of the groundwater flow between the Guadiana River and the aquifer downstream the Peñarroya Reservoir: municipality of Argamasilla de Alba]. Guadiana Water Authority, Ciudad Real, SpainGoogle Scholar
  25. GWA (Guadiana Water Authority) (1998a) Estudio de evaluación de recursos en la U.H. 04.02. Lillo-qiuntanar [Evaluation study of the groundwater resources in the hydrogeological unit 04.02. Lillo-quintanar]. Guadiana Water Authority, Ciudad Real, Spain, 167 ppGoogle Scholar
  26. GWA (Guadiana Water Authority) (1998b) Estudio de evaluación de recursos en la U.H. 04.03. Consuegra-villacañas [Evaluation study of the groundwater resources in the hydogeological unit 04.03. Consuegra-villacañas]. Guadiana Water Authority, Ciudad Real, Spain, 177 ppGoogle Scholar
  27. GWA (Guadiana Water Authority) (2003) Mejora del conocimiento cuantitativo de los recursos hídricos en la cabecera del río Guadiana [Development of the knowledge on the quantitative state of the water resources in the Upper Guadiana Basin]. Guadiana Water Authority, Ciudad Real, Spain, 116 ppGoogle Scholar
  28. GWA (Guadiana Water Authority) (2008) Plan Especial del Alto Guadiana [Special Plan for the Upper Guadiana]Google Scholar
  29. Holman IP, Tascone D, Hess TM (2009) A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia, UK: implications for groundwater resource management. Hydrogeol J 17:1629–1641CrossRefGoogle Scholar
  30. Iglesias A, Estrela T, Gallart E (2005) Impacto sobre los recursos hídricos [Impact on water resources]. In: Moreno JMc (ed) Evaluación Preliminar de los Impactos en España por Efecto del Cambio Climático [Preliminary assessment of impacts in Spain caused by global climate change]. Ministry of Agriculture, Spain, pp 303–353Google Scholar
  31. IGME (Geological Institute of Spain) (1975) Plan nacional de investigacion de aguas subterraneas: Proyecto de investigacion hidrogeologica de la cuenca alta y media del Guadiana [National plan of groundwater research: Upper Guadiana Basin groundwater investigation project]. Geological Survey of Spain, Madrid, 92 ppGoogle Scholar
  32. IGME (Geological Institute of Spain) (1981) Estudio de los recursos subterráneos de la cuenca alta del Guadiana. Sistemas acuíferos N.19-20-21-22-23-24-25. Avance 1981 [Study on the groundwater resources of the Upper Guadiana Basin: aquifer Systems no. 19-20-21-22-23-24-25. Preliminary report 1981]. IGME, MadridGoogle Scholar
  33. IGME (Geological Institute of Spain) (1985) Actualizacion de datos hidrogeologicos para la planificacion de las aguas subterraneas en castilla-la mancha. Informe final [Update of hydrogeological data for the groundwater resources planning in Castilla-La Mancha. Final report]. IGME, MadridGoogle Scholar
  34. IGME (Geological Institute of Spain) (1990) Proyecto de mejora de la infraestructura hidrogeologica del sistema 24 “Campos de Montiel” para la evaluacion de recursos hidricos subterraneos 1989–90 [Project of improvement of the hydrogeologic infraestracture for the evaluation of the groundwater resources in the system no. 24 “Campos de Montiel”]. IGME, Madrid 133 ppGoogle Scholar
  35. ITGE (Geomining technological institute of Spain) (1982) Estudio de las alternativas de utilizacion de las aguas subterraneas y superficiales en las cuencas del Guadiana y Tajo [Alternatives of use of groundwater and surface water in the Guadiana and Tagus basins]. ITGE, Madrid, 61 ppGoogle Scholar
  36. Kim NW, Chung IM, Won YS, Arnold JG (2008) Development and application of the integrated SWAT-MODFLOW model. J Hydrol 356:1–16. doi: 10.1016/j.jhydrol.2008.02.024 CrossRefGoogle Scholar
  37. Konikow LF, Bredehoeft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15:75–83CrossRefGoogle Scholar
  38. Llamas MR, Martínez-Santos P (2005a) Baseline condition report: Upper Guadiana Basin. NeWATER WB3 report, IGME, Madrid, 55 ppGoogle Scholar
  39. Llamas MR, Martínez-Santos P (2005b) Intensive groundwater use: a silent revolution that cannot be ignored. Water Sci Technol 51:167–174Google Scholar
  40. Lopez Geta JA, Fabregat Ventura V, Olivares Talens JF (1989) Sistema acuifero Nº 23 Mancha Occidental [Aquifer system no. 23: Western Mancha]. Manuales de utilización de acuíferos. Geomining Technological Institute of Spain, Madrid, 120 ppGoogle Scholar
  41. Lopez-Gunn E, Martínez-Cortina L (2006) Is self-regulation a myth? Case study on Spanish groundwater user associations and the role of higher-level authorities. Hydrogeol J 14:361–379. doi: 10.1007/s10040-005-0014-z CrossRefGoogle Scholar
  42. Markstrom SL, Niswonger RG, Regan RS, Prudic DE, Barlow PM (2008) GSFLOW-coupled ground-water and surface-water FLOW model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005) Techniques and Methods, US Geological Survey, Reston, VA, 240 ppGoogle Scholar
  43. Martínez-Cortina L (2000) Estimación de la recarga en grandes cuencas sedimentarias mediante modelos numéricos de flujo subterráneo. Aplicación a la cuenca alta del Guadiana [Recharge estimation in large sedimentary basins using groundwater flow numerical models. Application to the Upper Guadiana Basin]. PhD, University of Cantabria, SpainGoogle Scholar
  44. Martínez-Santos P, Martínez-Alfaro PE (2010) Estimating groundwater withdrawals in areas of intensive agricultural pumping in central Spain. Agric Water Manag 98:172–181CrossRefGoogle Scholar
  45. Martínez-Santos P, De Stefano L, Llamas MR, Martínez-alfaro PE (2008a) Wetland restoration in the Mancha occidental aquifer, Spain: a critical perspective on water, agricultural, and environmental policies. Restor Ecol 16:511–521. doi: 10.1111/j.1526-100X.2008.00410.x CrossRefGoogle Scholar
  46. Martínez-Santos P, Llamas MR, Martínez-Alfaro PE (2008b) Vulnerability assessment of groundwater resources: a modelling-based approach to the Mancha Occidental aquifer, Spain. Environ Model Softw 23:1145–1162. doi: 10.1016/j.envsoft.2007.12.003 CrossRefGoogle Scholar
  47. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. Techniques of Water Resources Investigations of the United States Geological Survey, book 6, chap A1, 586 ppGoogle Scholar
  48. MGWWG – Mediterranean Groundwater Working Group of the Mediterranean Joint Process WFD/EUWI Process (2007) Mediterranean groundwater report. Technical report on groundwater management in the Mediterranean and the water framework directive. http://www.semide.net/media_server/files/l/f/Mediterranean_Groundwater_Report_final_150207.pdf. Accessed 26 march 2012
  49. Molina E, García González MT, Espejo R (1991) Study of paleoweathering on the Spanish Hercynian basement Montes de Toledo (central Spain). Catena 18:345–354CrossRefGoogle Scholar
  50. Montero E (1994) Funcionamiento hidrogeológico del sistema de las Lagunas de Ruidera [Hydrogeological functioning of the Lakes of Ruidera System]. PhD, Complutense University of Madrid, SpainGoogle Scholar
  51. Montero E (2000) Contribución al estudio de la geometría y los límites del Campo de Montiel [A contribution to the study of the limits and geometry of the Campo de Montiel region]. Instituto de Estudios Albacetenses, Albacete, SpainGoogle Scholar
  52. Moreno L, Jiménez ME, Aguilera H, Jiménez P, de la Losa A (2010) The 2009 smouldering peat fire in Las Tablas de Daimiel National Park (Spain). Fire Technol 47:1–20. doi: 10.1007/s10694-010-0172-y Google Scholar
  53. Muñoz-Martín A (1997) Evolución geodinámica del borde oriental de la cuenca del Tajo desde el Oligoceno hasta la actualidad [Geodynamic evolution of the eastern border of the Tagus sedimentary basin from the Oligocene to the present]. PhD, Complutense University of Madrid, SpainGoogle Scholar
  54. Muñoz-Martín A, Cloetingh S, De Vicente G, Andeweg B (1998) Finite-element modelling of Tertiary paleostress fields in the eastern part of the Tajo Basin (central Spain). Tectonophysics 300:47–62. doi: 10.1016/S0040-1951(98)00233-9 CrossRefGoogle Scholar
  55. Orr S, Meystel AM (2005) Approaches to optimal aquifer management and intelligent control in a multiresolutional decision support system. Hydrogeol J 13:223–246. doi: 10.1007/s10040-004-0424-3 CrossRefGoogle Scholar
  56. Owen SJ, Jones NL, Holland JP (1996) A comprehensive modeling environment for the simulation of groundwater flow and transport. Eng Comput 12:235–242CrossRefGoogle Scholar
  57. Pasquier P, Marcotte D (2006) Steady- and transient-state inversion in hydrogeology by successive flux estimation. Adv Water Resour 29:1934–1952. doi: 10.1016/j.advwatres.2006.02.001 CrossRefGoogle Scholar
  58. Peters E, (2003). Propagation of drought through groundwater systems: illustrated in the Pang (UK) and Upper-Guadiana (ES) catchments. PhD Thesis, Wageningen University, The Netherlands, 203 ppGoogle Scholar
  59. Prudic DE (1989) Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model. US Geol Surv Open-File Rep 88-729, 113 ppGoogle Scholar
  60. Rincón PJ, Montero E, Vegas R (1996) Condicionantes estructurales de la unidad hidrogeológica del Campo de Montiel (Provincias de Ciudad Real y Albacete) [Structural conditioning of the Campo de Montiel hydrogeological unit (Ciudad Real and Albacete provinces)]. Geogaceta 20:1274–1276Google Scholar
  61. Rincón PJ, Montero E, Vegas R (2001) Marco tectónico de la unidad hidrogeológica del Campo de Montiel (Ciudad Real-Albacete, España Central) [Tectonic framework of the Campo de Montiel hydrogeological unit (Ciudad Real-Albacete, central Spain)]. Rev Soc Geol Esp 14:213–225Google Scholar
  62. Rosell J, Viladomiu L (2000) The wine regime. In: Brouwer F, Lowe P (eds) CAP regimes and the European countryside: prospects for integration between agricultural, regional and environmental policies. CABI, Wallingford, UKGoogle Scholar
  63. Ross A, Martínez-Santos P (2009) The challenge of groundwater governance: case studies from Spain and Australia. Reg Environ Chang 10:299–310. doi: 10.1007/s10113-009-0086-8 CrossRefGoogle Scholar
  64. Sanz D (2005) Contribution to the geometrical characterisation of the hydrogeological units forming the Mancha Oriental aquifer system. PhD, Complutense University of Madrid, SpainGoogle Scholar
  65. Sanz D, Gómez-Alday JJ, Castaño S, Moratalla A, De las Heras J, Martínez-Alfaro PE (2009) Hydrostratigraphic framework and hydrogeological behaviour of the Mancha Oriental System (SE Spain). Hydrogeol J 17:1375–1391. doi: 10.1007/s10040-009-0446-y CrossRefGoogle Scholar
  66. Sanz D, Castaño S, Cassiraga E, Sahuquillo A, Gómez-Alday J, Peña S, Calera A (2011) Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). Hydrogeol J 19:475–487. doi: 10.1007/s10040-010-0694-x CrossRefGoogle Scholar
  67. SGOP (Geological Survey of the Ministry of Public Works) (1982) Estudio de utilización conjunta de las aguas superficiales y subterráneas de la cuenca alta del Guadiana. Informe nº 2: modelo digital de simulación del embalse subterráneo de la Llanura Manchega [Conjuctive use of surface water and groundwater in the Upper Guadiana Basin. Report no. 2: digital model for the simulation of the underground reservoir]. SGOP, MadridGoogle Scholar
  68. SGOP (Geological Survey of the Ministry of Public Works) (1983) Estudio de la explotación de aguas subterráneas en las proximidades del Parque Nacional de las Tablas de Daimiel y su influencia sobre el soporte hídrico del ecosistema [Study on the groundwater use in the vicinity of the Tablas de Daimiel National Park and its influence on the hydrological conditions that support the ecosystem]. SGOP, MadridGoogle Scholar
  69. SGOP (Geological Survey of the Ministry of Public Works) (1988) Estudio hidrogeológico del Campo de Montiel y de la influencia de la explotación de aguas subterráneas sobre el Parque Natural de las Lagunas de Ruidera. Segundo informe [Hydrogeological study of the Campo de Montiel Region and the influence of groundwater exploitation on the Ruidera Lakes Natural Park. Second report]. SGOP, MadridGoogle Scholar
  70. SGOP (Geological Survey of the Ministry of Public Works) (1992) Informe sobre los recursos del acuífero del Campo de Montiel [Report on the groundwater resources of the Campo de Montiel aquifer]. SGOP, Madrid, 19 ppGoogle Scholar
  71. Sophocleous M, Perkins SP (2000) Methodology and application of combined watershed and ground-water models in Kansas. J Hydrol 236:185–201. doi: 10.1016/S0022-1694(00)00293-6 CrossRefGoogle Scholar
  72. Témez JR (1977) Modelo matemático de transformación precipitación–aportación [Mathematical model for the precipitation–runoff transformation]. ASINEL, MadridGoogle Scholar
  73. Troya A, Bernués M (1990) Humedales Españoles En la Lista Del Convenio de Ramsar (Spanish wetlands in the Ramsar convention’s list). ICONA, Ministerio de Agricultura, Alimentación, y Pesca, MadridGoogle Scholar
  74. Viladomiu L, Rosell J (1997) The complexity of the CMO for wine: a view from Spain. In: Tracy M (ed) CAP reform: the southern products. Agricultural Policy Studies, BrusselsGoogle Scholar
  75. Wriedt G, Van der Velde M, Aloe A, Bouraoui F (2009) Estimating irrigation water requirements in Europe. J Hydrol 373:527–544CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ángel Yustres
    • 1
  • Vicente Navarro
    • 1
  • Laura Asensio
    • 1
  • Miguel Candel
    • 1
  • Beatriz García
    • 1
  1. 1.Geoenvironmental Group, Civil Engineering DepartmentUniversidad de Castilla-La ManchaCiudad RealSpain

Personalised recommendations