Advertisement

Hydrogeology Journal

, Volume 21, Issue 5, pp 949–960 | Cite as

The distribution of groundwater habitats in Europe

  • Jean-François Cornu
  • David Eme
  • Florian MalardEmail author
Paper

Abstract

Globalization and planetary environmental changes have stimulated the inventory of groundwater resources and biodiversity at continental and global scales but there has been no concurrent attempt to map the distribution of groundwater habitats even at continental scale. A vector version of the areal information contained in the international hydrogeological map of Europe (IHME) was produced, and thematic indicators for assessing its accuracy were established. Then, groundwater flow type, permeability and pore size were extracted from the vector IHME to define and map the distribution of 13 habitat types. The habitat map was used to test for latitudinal variations in habitat diversity (HD) and whether these variations might in part account for the latitudinal gradient of regional species richness. The HD of river catchments decreased significantly with increasing latitude after correcting for the effect of catchment area. HD decreased by half the amount of deviance attributed to latitude in a regression model of regional species richness, although the explanatory power of HD was probably limited by the coarse resolution of biogeographical regions. The groundwater habitat map of Europe represents a major step for the understanding, assessment and conservation of groundwater biodiversity and for incorporating ecological perspectives in groundwater management policy.

Keywords

Europe Habitat heterogeneity Groundwater biodiversity Geographic information systems General hydrogeology 

La distribution des habitats d’eaux souterraines en Europe

Résumé

La globalisation et les changements environnementaux planétaires ont stimulé l’inventaire des ressources en eau souterraine et de leur biodiversité à des échelles continentales et globales mais il n’y a pas eu d’essai récent pour représenter la distribution des habitats d’eaux souterraines, même à une échelle continentale. Une version vectorisée des informations surfaciques contenues dans la carte hydrogéologique internationale de l’Europe (IHME) a été produite et des index thématiques pour évaluer sa précision établis. Puis, les types d’écoulements souterrains, de perméabilité et de porosité ont été extraits du support IHME pour définir et cartographier la distribution de 13 types d’habitats. La carte a été utilisée pour apprécier les variations de la diversité des habitats avec la latitude et voir si elles pouvaient rendre compte en partie du gradient de la richesse des espèces régionales selon la latitude. La diversité des habitats des bassins d’alimentation des rivières diminue de façon significative avec la latitude après correction de l’incidence de la superficie du bassin. Elle abaisse de moitié la valeur de la variation attribuée à la latitude dans un modèle de régression de la richesse des espèces régionales, bien que sa puissance d’investigation ait été probablement limitée par le caractère grossier de la résolution des régions biogéographiques. La carte de l’habitat des nappes en Europe représente un pas majeur pour la compréhension, l’évaluation et la conservation de la biodiversité de l’eau souterraine et pour l’intégration des perspectives écologiques dans la politique de gestion des eaux souterraines.

La distribución de hábitats de agua subterránea en Europa

Resumen

La globalización y los cambios ambientales planetarios han estimulado el inventario de los recursos de agua subterránea y de la biodiversidad en escalas continentales y globales pero no ha habido intentos concurrentes para mapear la distribución de los hábitats de agua subterránea ni siquiera a escala continental. Se produjo una versión vectorial de la información areal contenida en el mapa hidrogeológico internacional de Europa (IHME), y se establecieron los indicadores temáticos para evaluar su exactitud. Entonces, el tipo de flujo subterráneo, la permeabilidad y tamaños de poros se extrajeron desde el IHME vectorial para definir y mapear la distribución de 13 tipos de hábitats. El mapeo de hábitat fue usado para probar las variaciones latitudinales en la diversidad del hábitat (HD) y si estas variaciones podrían en parte explicar el gradiente latitudinal de la riqueza de las especies regionales. El HD de las cuencas de los ríos decreció significativamente con la latitud creciente después de corregir los efectos del área de la cuenca. HD decreció a la mitad de la cantidad de la desviación atribuida a la latitud en un modelo de regresión de la riqueza de las especies regionales, aunque el poder explicativo de HD estuvo probablemente limitado por la resolución gruesa de las regiones biogeográficas. El mapa del hábitat de agua subterránea de Europa representa un gran paso para el entendimiento, evaluación y conservación de la biodiversidad del agua subterránea y para la incorporación de perspectivas ecológicas en la política de manejo del agua subterránea.

A distribuição dos habitats de águas subterrâneas na Europa

Resumo

A globalização e as mudanças ambientais planetárias têm estimulado o inventário dos recursos hídricos subterrâneos e da biodiversidade às escalas continental e global mas não houve nenhuma tentativa simultânea para mapear a distribuição de habitats de água subterrânea, mesmo à escala continental. Foi produzida uma versão vetorial da informação em área contida no mapa hidrogeológico internacional da Europa (MHIE) e estabelecidos indicadores temáticos para avaliar sua precisão. Posteriormente foram extraídos do MHIE vetorial o tipo de fluxo de água subterrânea, a permeabilidade e a dimensão dos poros para definir e mapear a distribuição de 13 tipos de habitats. O mapa de habitats foi usado para testar variações em latitude da diversidade de habitats (DH) e se estas variações poderiam, em parte, contribuir para o gradiente latitudinal de riqueza de espécies regionais. A DH de bacias hidrográficas diminuía significativamente com o aumento da latitude após correção do efeito da área da bacia. A DH diminuiu pela metade a quantidade do desvio atribuído à latitude num modelo de regressão da riqueza de espécies regionais, embora o poder explicativo da DH tenha sido, provavelmente, limitado pela baixa resolução das regiões biogeográficas. O mapa de habitats de águas subterrâneas da Europa representa um passo importante para a compreensão, avaliação e conservação da biodiversidade de águas subterrâneas e para a incorporação de perspetivas ecológicas na política de gestão de águas subterrâneas.

Notes

Acknowledgements

This research was partly funded by the European Commission (7th EU Framework Programme, Contract No. 226874, BioFresh) and the Agence Nationale de la Recherche (ANR 08JCJC012001, “DEEP”). We thank Laurent Simon and Christophe Douady for commenting on an earlier draft of this manuscript and the associate editor and two anonymous reviewers for their valuable comments. The groundwater habitat map of Europe can be downloaded from the web site of the European BioFresh project (http://data.freshwaterbiodiversity.eu/data/shapefiles/). The vector version of the IHME can be obtained upon request from the lead author. In return for the use of these two vector maps, we kindly request that you cite the present publication.

Supplementary material

10040_2013_984_MOESM1_ESM.pdf (6.8 mb)
ESM 1 FigESM1, FigESM2 and TableESM1 (PDF 6.82 mb)
10040_2013_984_MOESM2_ESM.xls (9.9 mb)
ESM 2 Table ESM2 (XLS 9.92 mb)
10040_2013_984_MOESM3_ESM.xls (552 kb)
ESM 3 Table ESM3 (XLS 552 kb)

References

  1. Bartholome E, Belward AS (2005) GLC2000: a new approach to global land cove mapping from Earth observation data. Int J Remote Sens 26(9):1959–1977CrossRefGoogle Scholar
  2. Bertrand G, Goldscheider N, Gobat JM, Hunkeler D (2012) From multi-scale conceptualization to a classification system for inland groundwater ecosystems. Hydrogeol J 20:5–25CrossRefGoogle Scholar
  3. BGR (Bundensanstalt für Geowissenschaften und Rohstoffe) (2012) IHME 1500: international hydrogeological map of Europe. Download at http://www.bgr.de/app/fishy/ihme1500/download.html. Accessed March 2013
  4. Boulton AJ (2009) Recent progress in the conservation of groundwaters and their dependent ecosystems. Aquat Conserv 19:731–735CrossRefGoogle Scholar
  5. Bovolo CI, Parkin G, Sophocleous M (2009) Groundwater resources, climate and vulnerability. Environ Res Lett 4(3):1–3CrossRefGoogle Scholar
  6. Buffington JM, Tonina D (2009) Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geog Compass 3:1–25. doi: 10.1111/j.1749-8198.2009.00225.x CrossRefGoogle Scholar
  7. Castellarini F, Dole-Olivier M-J, Malard F, Gibert J (2007) Using habitat heterogeneity to assess stygobiotic species richness in the French Jura region with a conservation perspective. Fund App Limn 169:69–78CrossRefGoogle Scholar
  8. Chrisman N, Lester M (1991) A diagnostic test for error in categorical maps. AutoCarto 10:330–348Google Scholar
  9. Culver DC, Deharveng L, Bedos A, Lewis JJ, Madden M, Reddell JR, Sket B, Trontelj P, White D (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128CrossRefGoogle Scholar
  10. Danielopol DL, Pospisol P, Rouch R (2000) Biodiversity in groundwater: a large-scale view. Trends Ecol Evol 15(6):223–224CrossRefGoogle Scholar
  11. Danielopol DL, Griebler C, Ginatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosystems. Environ Conserv 30:104–130CrossRefGoogle Scholar
  12. Danielopol DL, Gibert J, Griebler C, Gunatilaka A, Hahn HJ, Messana G, Notenboom J, Sket B (2004) Incorporating ecological perspectives in European groundwater management policy. Environ Conserv 31:185–189CrossRefGoogle Scholar
  13. Danielopol D, Griebler C, Gunatilaka A, Hahn HJ, Gibert J, Mermillod-Blondin F, Messana G, Notenboom J, Sket B (2008) Incorporation of groundwater ecology in environmental policy. In: Quevauviller P (ed) Groundwater science and policy, chap 11.2. RSC (Royal Soc. of Chemistry), London, pp 671–689Google Scholar
  14. Danielson JJ, Gesch DB (2011) Global multi-resolution terrain elevation data 2010 (GMTED2010). US Geol Surv Open-File Rep 2011–1073, 26 ppGoogle Scholar
  15. Datry T, Malard F, Niederreiter R, Gibert J (2003) Video-logging for examining biogenic structures in deep heterogeneous subsurface sediments. CR Acad Sci Paris Life Sci 326:589–597Google Scholar
  16. Deharveng L, Stoch F, Gibert J, Bedos A, Galassi D, Zagmajster M, Brancelj A, Camacho A, Fiers F, Martin P, Giani N, Magniez G, Marmonier P (2009) Groundwater biodiversity in Europe. Freshw Biol 54:709–726CrossRefGoogle Scholar
  17. Dole-Olivier MJ, Castellarini F, Coineau N, Galassi DMP, Martin P, Mori N, Valdecasas A, Gibert J (2009a) Towards an optimal sampling strategy to assess groundwater biodiversity: comparison across six European regions. Freshw Biol 54:777–796CrossRefGoogle Scholar
  18. Dole-Olivier MJ, Malard F, Martin D, Lefebure T, Gibert J (2009b) Relationships between environmental variables and groundwater biodiversity at the regional scale. Freshw Biol 54:797–813CrossRefGoogle Scholar
  19. Durr H, Meybeck M, Durr SH (2005) Lithologic composition of the Earth’s continental surfaces derived from a new digital map emphazing riverine material transfer. Glob Biogeochem Cycles 19:GB4S10. doi: 10.1029/2005GB002515 CrossRefGoogle Scholar
  20. ESRI (2010) ArcGIS desktop: release 9.3. Environmental Systems Research Institute, Redlands, CAGoogle Scholar
  21. FAO, IIASA, ISRIC, ISS-CAS, JRC (2012), Harmonized world soil database (version 1.2), FAO, RomeGoogle Scholar
  22. Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. EOS Trans AGU 81:583–585CrossRefGoogle Scholar
  23. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201CrossRefGoogle Scholar
  24. Foody GM (2007) Map comparison in GIS. Progr Phys Geog 31(4):439–445CrossRefGoogle Scholar
  25. Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Phil Trans R Soc Lond B 358:1957–1972CrossRefGoogle Scholar
  26. Gaffin SR, Rosenzweig C, Xing X, Yetman G (2004) Downscaling and geo-spatial gridding of socio-economic projections from the IPCC Special Report on Emissions Scenarios (SRES). Glob Environ Chang 14:105–123CrossRefGoogle Scholar
  27. GBIF (2001) Global biodiversity information facility. http://www.gbif.org. Accessed March 2013
  28. Gibert J, Danielopol DL, Stanford JA (1994a) Groundwater ecology. Academic, New YorkGoogle Scholar
  29. Gibert J, Stanford JA, Dole-Olivier MJ, Ward JV (1994b) Basic attributes of groundwater ecosystems and prospects for research. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, New York, pp 7–40Google Scholar
  30. Gilbrich WH (2000) International hydrogeological map of Europe. Waterways J 19:11Google Scholar
  31. Gleeson T, Smith L, Moosdorf N, Hartman J, Durr HH, Manning AH, Van Beel LPH, Jellinek AM (2011) Mapping permeability over the surface on Earth. Geophys Res Lett 38:L02401. doi: 10.1029/2010GL045565 Google Scholar
  32. Gogu RC, Carabin G, Hallet V, Peters V, Dassargues A (2001) GIS-based hydrogeological databases and groundwater modelling. Hydrogeol J 9:555–556CrossRefGoogle Scholar
  33. Griebler C, Stein H, Kellermann C, Berkhoff S, Brielmann H, Schmidt S, Selesi D, Steube C, Fuchs A, Hahn HJ (2010) Ecological assessment of groundwater ecosystems: vision or illusion? Ecol Eng 36:1174–1190CrossRefGoogle Scholar
  34. Grunwald S, Thompson JA, Boettinger JL (2011) Digital soil mapping and modelling at continental scales: finding solutions for global issues. Soil Sci Soc Am J 75:1201–1213CrossRefGoogle Scholar
  35. Hahn HJ (2009) A proposal for an extended typology of groundwater habitats. Hydrogeol J 17:77–81CrossRefGoogle Scholar
  36. Hahn HJ, Fuchs A (2009) Distribution patterns of groundwater communities across aquifer types in south-western Germany. Freshw Biol 54:848–860CrossRefGoogle Scholar
  37. Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13:98–111CrossRefGoogle Scholar
  38. Hancock PJ, Hunt RJ, Boulton AJ (2009) Hydrogeoecology the interdisciplinary study of groundwater dependent ecosystems. Hydrogeol J 17:1–3CrossRefGoogle Scholar
  39. Hiscock KM (2011) Groundwater in the 21st century: meeting the challenges. In: Jones JAA (Ed) Sustaining groundwater resources, International Year of Planet Earth, Springer, Heidelberg, Germany, pp 207–225Google Scholar
  40. Hof C, Brändle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Glob Ecol Biogeogr 17:539–546CrossRefGoogle Scholar
  41. Hollis JM, Holman IP, Burton RGO, Willers CM,Pavelley D (2002) A digital data set of European water resources at 1:500.000. Report on behalf of the European Commission and the European Crop Protection Association, 29 pp. http://eusoils.jrc.ec.europa.eu/ESDB_Archive/groundwater/docs/EUGWFR.pdf. Accessed March 2013
  42. Humphreys WF (2009) Hydrogeology and groundwater ecology: does each inform the other? Hydrogeol J 17:5–21CrossRefGoogle Scholar
  43. IAH (International Association of Hydrogeologists) (1983) International legend for hydrogeological maps. Document SC-84/WS/7. UNESCO, Paris, 49 ppGoogle Scholar
  44. IGRAC (2005) Global groundwater regions. International Groundwater Resources Assessment Centre, Delft, The Netherlands. Available at http://www.un-igrac.org/publications/329. Accessed March 2013
  45. Illies J (1978) Limnofauna Europaea, 2nd edn. Fischer, Stuttgart, GermanyGoogle Scholar
  46. IUCN (2012) The IUCN red list of threatened species, spatial data V2010.4. http://www.iucnredlist.org/technical-documents/spatial-data. Accessed March 2013
  47. Jones JAA (2011) Groundwater in peril. In: Jones JAA (Ed) Sustaining groundwater resources, International Year of Planet Earth, Springer, Heidelberg, Germany, pp 1–19Google Scholar
  48. Larned ST (2012) Phreatic groundwater ecosystems: research frontiers for freshwater ecology. Freshw Biol 57:885–906CrossRefGoogle Scholar
  49. Laxton JL, Becken K (1996) The design and implementation of a spatial data base for the production of geological maps. Comput Geosci 22(7):723–733CrossRefGoogle Scholar
  50. Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborn elevation data. EOS Trans AGU 89:93–95CrossRefGoogle Scholar
  51. Liu C, Frazier P, Kumar L (2007) Comparative assessment of the measures of thematic classification accuracy. Remote Sens Environ 107:606–616CrossRefGoogle Scholar
  52. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant W (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21(6–7):1303–1330CrossRefGoogle Scholar
  53. MacDonald AM, Robins NS, Ball DF, Dochartaigh BEO (2005) An overview of groundwater in Scotland. Scott J Geol 41(1):3–11CrossRefGoogle Scholar
  54. MacDonald AM, Bonsor HC, Dochartaigh BEO, Taylor RG (2012) Quantitative maps of groundwater resources in Africa. Environ Res Lett 7:1–7Google Scholar
  55. Malard F (2012) Filling the gap: distribution database of European groundwater crustaceans. BioFresh Newsl 4:7. http://www.freshwaterbiodiversity.eu/tl_files/downloads/Downloads/BioFresh_newsletter_issue_004.pdf. Accessed March 2013Google Scholar
  56. Malard F, Hervant F (1999) Oxygen supply and the adaptations of animals in groundwater. Freshw Biol 41:1–30CrossRefGoogle Scholar
  57. Malard F, Tockner K, Dole-Olivier MJ, Ward JV (2002) A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshw Biol 47:621–640CrossRefGoogle Scholar
  58. Malard F, Boutin C, Camacho A, Ferreira D, Michel G, Sket B, Stoch F (2009) Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw Biol 54(4):756–776CrossRefGoogle Scholar
  59. Masuch-Oesterreich D (2000) A methodical approach to GIS-based hydrogeological mapping. Rev Mex Cienc Geol 17(1):24–33Google Scholar
  60. Michel G, Malard F, Deharveng L, Lorenzo D, Sket TB, de Broyer C (2009) Reserve selection for conserving groundwater biodiversity. Freshw Biol 54(4):861–876CrossRefGoogle Scholar
  61. Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob Biogeochem Cycles 22:GB1022. doi: 10.1029/2007GB002947 CrossRefGoogle Scholar
  62. Morris BL, Lawrence ARL, Lawrence, Chilton PJC, Adams B, Calow RC, Klinck BA (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management. Early warning and assessment report series, RS. 03–3. UNEP, Nairobi, KenyaGoogle Scholar
  63. New M, Hulme M, Jones P (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25CrossRefGoogle Scholar
  64. Nikas K, Antonakos A, Kallergis G, Kounis G (2010) International hydrogeological map of Europe: sheet D6 “Athina”. Bull Geol Soc Greece 43(4):1821–1830Google Scholar
  65. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed March 2013
  66. Richts A, Struckmeier WF, Zaepke M (2011) WHYMAP and the groundwater resources map of the world 1:25,000,000. In: Jones JAA (ed) Sustaining groundwater resources, International Year of Planet Earth. Springer, Heidelberg, Germany, pp 159–173Google Scholar
  67. Rouch R (1986) Sur l’écologie des eaux souterraines dans le karst [About the ecology of karstified aquifers]. Stygologia 2:352–398Google Scholar
  68. Rutledge D (2003) Landscape indices as measures of the effects of fragmentation: can pattern reflect process? Doc Science Internal Series 98. Department of Conservation, Wellington, New ZealandGoogle Scholar
  69. Stassberg G, Maidment DR, Jones NL (2007) A geographic data model for representing ground water systems. Groundwater 45(4):515–518CrossRefGoogle Scholar
  70. Stehman SV (1999) Comparing thematic maps based on map value. Int J Remote Sens 20(12):2347–2366CrossRefGoogle Scholar
  71. Stehman SV (2000) Practical implications of design based sampling inference for thematic map accuracy assessment. Remote Sens Environ 72:35–45CrossRefGoogle Scholar
  72. Stehman SV (2009) Sampling designs for accuracy assessment of land cover. Int J Remote Sens 30(20):5243–5272CrossRefGoogle Scholar
  73. Stein H, Griebler C, Berkhoff S, Matzke D, Fuchs A, Hahn HJ (2012) Stygoregions: a promising approach to a bioregional classification of groundwater systems. Sci Rep 2(673):1–9. doi: 10.1038/srep00673 Google Scholar
  74. Steube C, Richter S, Griebler C (2009) First attempts toward an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeol J 17:23–35CrossRefGoogle Scholar
  75. Stoch F, Galassi DMP (2010) Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653:217–234CrossRefGoogle Scholar
  76. Stoch F, Artheau M, Brancelj A, Galassi DMP, Malard F (2009) Biodiversity indicators in European groundwaters: towards a predictive model of stygobiotic species richness. Freshw Biol 54(4):745–755CrossRefGoogle Scholar
  77. Struckmeier WF (2008) Contribution of hydrogeological mapping to water monitoring programmes. In: Quevauvlier PP, Borchers U, Thompson C, Simonard T (eds) The water framework directive: ecological and chemical status monitoring. Wiley, New York, pp 215–227CrossRefGoogle Scholar
  78. Struckmeier WF, Margat J (1995) Hydrogeological maps: a guide and a standard legend. IAH Publ. 17, Heise, Hannover, 177 ppGoogle Scholar
  79. Tabor K, Williams JW (2010) Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol Appl 20:554–565CrossRefGoogle Scholar
  80. Valett HM, Morrice JA, Dahm CN, Campana ME (1996) Parent lithology, surface-groundwater exchange, and nitrate retention in headwater streams. Limnol Oceanogr 41:333–345CrossRefGoogle Scholar
  81. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New YorkCrossRefGoogle Scholar
  82. Vogt J, Soille P, Colombo R, Paracchini ML, De Jager A (2007) Development of a pan European river and catchment database. In: Digital terrain modelling, lecture notes in geoinformation and cartography. Springer, Heidelberg, Germany, pp 121–144Google Scholar
  83. Vorosmarty CJ, Fekete B, Meybeck M, Lammers RB (2000) A stimulated topological network representing the global system of rivers at 30-minute spatial resolution (STN-30). Glob Biogeochem Cycles 14:599–621CrossRefGoogle Scholar
  84. Ward TJ, Vanderklift MA, Nicholls AO, Kenchington RA (1999) Selecting marine reserves using habitats and species assemblages as surrogates for biological diversity. Ecol Appl 9(2):691–698CrossRefGoogle Scholar
  85. Wendland F, Blum A, Coetsiers M, Gorova R, Griffioen J, Grima J, Hinsby K, Kunkel R, Marandi A, Melo T, Panagopoulos A, Pauwels H, Ruisi M, Traversa P, Vermooten JSA, Walraevens K (2008) European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environ Geol 55:77–85CrossRefGoogle Scholar
  86. Wodja P, Brouyere S, Dassargues A (2010) Geospatial information in hydrogeological studies. In: Anderson MG, McDonnell JJ (eds) Encyclopedia of hydrological sciences, vol 22. Wiley, Chichester, UKGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jean-François Cornu
    • 1
  • David Eme
    • 2
  • Florian Malard
    • 2
    Email author
  1. 1.UMR BOREA, Département Milieux et Peuplements Aquatiques, MNHN, CNRS 7208, IRD 207, UPMC, Muséum National d’Histoire NaturelleParisFrance
  2. 2.UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés; Ecologie, Evolution, Ecosystèmes SouterrainsUniversité Lyon 1Villeurbanne CedexFrance

Personalised recommendations