Advertisement

Hydrogeology Journal

, Volume 21, Issue 5, pp 1101–1115 | Cite as

Isotope-based investigation on the groundwater flow and recharge mechanism in a hard-rock aquifer system: the case of Ranchi urban area, India

  • Dipankar SahaEmail author
  • S. N. Dwivedi
  • Goutam Kr Roy
  • D. V. Reddy
Report

Abstract

Ranchi urban area (257  km2) depends on aquifers for 30  % of its total drinking-water supply of 17 million myear−1. Local hydrostratigraphy is represented by a heterogeneous, weathered and fractured aquifer system, typical of the Precambrian suite of rocks in the Indian subcontinent. Intensive development of the fractured aquifers, up to 200  m below ground, has lowered the hydraulic head and resulted in dwindling yields from fractures during the summer. To understand the groundwater flow regime and aquifer recharge mechanism, the present study examines δ18O and δD variation in aquifer-specific samples along with water levels, yield of the fractures, EC and Cl. Three types of groundwater have been identified based on isotopic composition and d-excess values, each representing different recharge source-water and pathways. The major source of recharge for the aquifers is infiltration from rainfall. Two large reservoirs and an excavated lake within the study area contribute to the recharge process but insignificantly. Isotopic compositions and the relatively low EC and low Cl concentrations of high-yielding bore wells in some places indicate the presence of fast-conducting fracture zones receiving copious recharge from rainfall. Such fractures can be developed further through bore wells for drinking supply with due provision for artificial recharge.

Keywords

Groundwater development Fractured rocks Urban water supply Stable isotopes India 

Investigation sur le flux de nappe et sur le mécanisme de recharge d’un système aquifère du socle basée sur les isotopes : cas de la zone urbaine de Ranchi, Inde

Résumé

La zone urbaine de Ranchi (257 km2) dépend d’aquifères pour 30 % de ses besoins totaux en eau potable soit 17 million m3 an–1. L’hydrostratigraphie locale est représentée par un système hétérogène de roches aquifères altérées et fracturées, typique de la colonne précambrienne du Sous-continent Indien. Une exploitation intensive des aquifères fracturés, jusqu’à 200 m de profondeur, a abaissé la cote piézométrique avec comme résultat des débits de fractures décroissants durant l’été. Pour comprendre le régime d’écoulement de l’aquifère et son mécanisme de recharge, la présente étude examine la variation δ18O et δD dans des échantillons spécifiques d’eau de l’aquifère selon les niveaux de l’eau, le débit des fractures, EC et Cl. Trois types d’eau souterraine ont été identifiés sur la base de la composition isotopique et des valeurs d-excédentaires, chacune représentant différentes sources de recharge et trajectoires d’écoulement. La source majeure de recharge des aquifères est l’infiltration d’eau de pluie. Deux grands réservoirs et un lac excavé dans le domaine de l’étude contribuent au processus de recharge mais de façon insignifiante. Les compositions isotopiques et les concentrations EC et Cl relativement basses dans les puits à haut débit forés en quelques emplacements indiquent la présence de zones de fractures très conductrices recevant une copieuse recharge de chutes de pluie. De telles fractures peuvent être d’avantage développées par forages pour l’alimentation en eau potable ainsi que pour la provision dédiée à la recharge artificielle.

Investigación basada en isótopos sobre el mecanismo de flujo y la recarga en un sistema de roca dura: el caso del área urbana de Ranchi, India

Resumen

El área urbana de Ranchi (257 km2) depende de los acuíferos para el 30% de su abastecimiento de agua potable, que es de 17 millones de m3 año–1. La hidroestratigrafía local está representada por un sistema acuífero fracturado, meteorizado y heterogéneo, típico del conjunto de rocas del Precámbrico en el subcontinente Indiano. El desarrollo intensivo de los acuíferos fracturados, hasta 200 m por debajo del terreno, ha reducido la carga hidráulica y como resultado rendimientos decrecientes de las fracturas durante el verano. Para entender el régimen de flujo subterráneo y el mecanismo de recarga del acuífero, el presente estudio examina la variación de δ18O y δD en muestras específicas del acuífero mediante los niveles de agua, el rendimiento de las fracturas, EC y Cl. Se identificaron tres tipos de agua subterránea en base a la composición isotópica y los valores de d-excesos, cada uno representando diferente fuentes de recarga de agua y trayectorias. La mayor fuente de recarga para los acuíferos es la infiltración a partir de la lluvia. Dos grandes reservorios y un lago excavado dentro del área de estudio contribuyen al proceso de recarga pero en forma no significativa. Las composiciones isotópicas y las relativamente bajas EC y concentraciones de Cl- en los pozos de altos rendimientos en algunos lugares indican la presencia de zonas de fracturas de una rápida conducción que es receptora de una recarga copiosa a partir de la lluvia. Tales fracturas pueden ser desarrolladas además a través de pozos para el abastecimiento con la provisión por recarga artificial.

Investigação do escoamento de água subterrânea e do mecanismo de recarga num sistema aquífero de rochas fraturadas: o caso da área urbana de Ranchi, Índia

Resumo

A área urbana de Ranchi (257 km2) está dependente de aquíferos em cerca de 30% do seu abastecimento total de água potável de 17 milhões de m3 ano–1. A hidroestratigrafia local é representada por um sistema aquífero heterogéneo, meteorizado e fraturado, típico do conjunto de rochas do Pré-Câmbrico do subcontinente Indiano. O desenvolvimento intensivo dos aquíferos fraturados, até aos 200 m abaixo do solo, diminuiu a carga hidráulica e resultou em produtividades cada vez menores das fraturas durante o verão. Para se compreender o regime de escoamento da água subterrânea e o mecanismo de recarga aquífera, o presente estudo analisa as variações de δ18O e δD em amostras de aquíferos específicos, juntamente com os níveis da água, a produtividade das fraturas, a CE e o Cl. Com base na composição isotópica e em valores de excesso de deutério, foram identificados três tipos de água subterrânea, cada um representando diferentes origens da água de recarga e diferentes percursos. A maior fonte de recarga dos aquíferos é a infiltração a partir da precipitação. Dois grandes reservatórios e um lago escavado dentro da área de estudo contribuem para o processo de recarga, mas de forma insignificante. As composições isotópicas e os valores relativamente baixos de CE e das concentrações de Cl dos furos de elevada produtividade em alguns locais indicam a presença de zonas de fratura de condução rápida, que recebem abundante recarga a partir da precipitação. Estas fraturas podem ser mais desenvolvidas através de furos para abastecimento de água, com a provisão adequada por recarga artificial.

Notes

Acknowledgements

The authors are thankful to S. C. Dhiman, S. Kunar and S. Gupta of Central Ground Water Board for their help and suggestions. The last author is indebted to M. Sen of National Geophysical Research Institute for help and useful suggestions. The authors extend sincere thanks to Lokender Kumar and K. K. Jha for their help during preparation of the manuscript. The authors are grateful to the anonymous reviewers for their efforts in enhancing the clarity and presentation of the report. The opinions expressed in the report are the authors’ personal opinions and not of their affiliated departments/institutes.

References

  1. Alvarado CJA, Leuenberger M, Kipfer R, Paces T, Purtschert R (2011) Reconstruction of past climate condition over central Europe from ground water data. Quat Sci Rev. doi: 10.1016/j.quascirev.2011.09.003
  2. Aranyossy JF, Filly A, Tandia AA, Louvat D, Ousmane B, Joseph A, Fonts, J (1992) Estmation des flux d’ evaporation diffuse sous couvert sableux en climat hyperaide (Erg de Bilma, Niger) [Estimation of diffuse evaporation flux under sandy soil cover in hyperarid climate (Erg of Bilma, Niger)]. In: Isotope Techniques in Water Resources Development 1991, IAEA Symposium 319, Vienna, March 1991, pp 309–324Google Scholar
  3. Athavale RR (2000) Replenishable ground water potential of India: an estimate of injection tritium studies. J Hydrol 234:38–53CrossRefGoogle Scholar
  4. Ballukraya PN (1997) Ground water over-exploitation: a case study from Moje-Anepura, Kolar district, Karnataka. J Geol Soc India 50:227–282Google Scholar
  5. Ballukraya PN, Sakthivadivel R (2002) Overexploitation and artificial recharge of hard-rock aquifers of South India: issues and options. IWMI- Tata Water Policy Research Program, International water Management Institute, pp 1–14. Available at http://www.iwmi.org/iwmi-tata. Accessed April 2012
  6. CGWB (2006) Dynamic ground water resources of India as on March 2004, Government of India, Ministry of Water Resources, CGWB, Faridabad. Available at http://cgwb.gov.in/documents/DGWR2004.pdf. Accessed April 2012
  7. CGWB (2009) Ground water resource estimation methodology. Government of India, Ministry of Water Resources, CGWB, Faridabad. Available at http://cgwb.gov.in/documents/GEC97.pdf. Accessed April 2012
  8. CGWB and GWD (2009) Dynamic groundwater resources of Jharkhand state as on 31st March. Central Ground Water Board, Govt. of India and Ground Water Directorate, Govt. of Jharkhand, RanchiGoogle Scholar
  9. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, pp 1–328Google Scholar
  10. Cook PG, Robinson NI (2002) Estimating groundwater recharge in fractured rock from environmental 3H and 36Cl. Clare Valley, South Australia. Water Resour Res 38(8):1136. doi: 10.1029/2001WR000772
  11. Craig H (1961) Isotopic variations in meteoric water. Science 113:1702–1703CrossRefGoogle Scholar
  12. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  13. De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10(1):5–17CrossRefGoogle Scholar
  14. Deshpande RD, Gupta SK (2012) Oxygen and hydrogen isotopes in hydrological cycle: new data from IWIN National Programme. Proc. Indian Natl. Sci. Acad. 78, New Delhi, pp 321–331Google Scholar
  15. Deshpande RD, Dave M, Laxmi SR, Gupta SK (2011) IWIN National Programme: new hydrological insights. In: Aggarwal SK, Jaison PG, Sarkar A (eds) 14th ISMAS Symposium cum Workshop on Mass Spectrometry: Munnar. Indian Society for Mass Spectrometry, Mumbai, India, pp 95–108Google Scholar
  16. Detay M, Poyet P, Emsellem Y, Mernardi A, Aubrac G (1989) Development of the saprolite reservoir and its state of saturation: influence on the hydrodynamic characteristics of drillings of crystalline basement (in French). C R Acad Sci Paris II 309:429–436Google Scholar
  17. Dewandel B, Lachassagne P, Wyns R, Marechal JC, Krishnamurty NS (2006) A generalized 3D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Hydrgeol J 330:260–284CrossRefGoogle Scholar
  18. Ghose NC, Shmakin BM, Smirnov VN (1973) Some geochronological observation on the Precambrian of Chotanagpur, Bihar. Geol Mag 110:481–484CrossRefGoogle Scholar
  19. Gleeson T, Novakowski K, Kyser TK (2009a) Extremely rapid and localized recharge to a fractured rock aquifer. J Hydrol 376(3–4):496–509. doi: 10.1016/j.hydrol.2009.07.056 Google Scholar
  20. Gleeson T, Novkowski K, Cook PG, Kyser TK (2009b) Constraining groundwater discharge in large watershed: integrated isotopic, hydraulic and thermal data from Canadian Shield. Water Resour Res 45:W08402. doi: 10.1029/2008/WR007622
  21. Gupta SK, Despande RD (2005) Isotopic investigations in India: What has been learnt? Curr Sci 89(5):825–835Google Scholar
  22. Kulkarni KM, Navada SV, Rao SM, Nair AR, Kulkarni UP, Sharma S (1995) Effect of the Holocene climate on composition of ground water in parts of Haryana,India. IAEA-SM-336/36. In: Proc. of the Symposium on Isotope in Water Resource Management. Vienna, March 1995, pp 439–454Google Scholar
  23. Mukherjee A, Fryan AE, Rowe HD (2007) Regional scale stable isotopic signatures of recharge and deep ground water in the arsenic affected areas of West Bengal, India. J Hydrol 334:151–161CrossRefGoogle Scholar
  24. NBSS&LUP (1996) Soils of Bihar (undivided) for optimizing land use. NBSS Publ. 50b, National Bureau of Soil Survey and Land Use Planning, Nagpur, IndiaGoogle Scholar
  25. NIUA (2005) Status of water supply, sanitation and solid waste management in urban areas. NIUA, New DelhiGoogle Scholar
  26. Planning Commission (2011) Mid-term appraisal, Eleventh five year plan 2007–2012, Planning Commission, Government of India. Oxford India Press, New DelhiGoogle Scholar
  27. Praamsma TW, Novakowski KS, Kyser TK, Hall K (2009) Using stable isotope and hydraulic head data to investigate groundwater recharge and discharge in a fractured rock aquifer. J Hydrol 366:35–45CrossRefGoogle Scholar
  28. Ragunath HM (1987) Ground water. Wiley Eastern, New Delhi, 565 ppGoogle Scholar
  29. RRDA (2007) Ranchi urban area development plan. Ranchi Regional Area Development Authority. Govt. of Jharkhand, RanchiGoogle Scholar
  30. Saha D, Agrawal AK (2006) Determination of specific yield using water balance approach: a case study of Torla Odha water shed in Deccan Trap Province, Maharastra State, India. Hydrogeol J 14:625–635CrossRefGoogle Scholar
  31. Saha D, Sinha UK, Dwivedi SN (2011) Characterization of recharge processes in shallow and deeper aquifers using isotopic signatures and geochemical behavior of groundwater in an arsenic-enriched part of the Ganga Plain. Appl Geochem 26(4):415–654. doi: 10.1016/j.apgeochem.2011.01.003
  32. Sengupta S, Sarkar A (2006) Stable isotope evidence of dual (Arabian and Bay of Bengal) vapour sources in monsoonal precipitation over north India. Earth Planet Sci Lett 250:511–521CrossRefGoogle Scholar
  33. Sengupta S, McArthur JM, Sarkar A, Leng MJ, Revenscroft P, Howarth RJ, Banerjee District Magistrate (2008) Do ponds cause arsenic pollution of ground water in the Bengal Basin? An answer from West Bengal. Environ Sci Tech 42:5156–5164. doi: es 702988m/es702988m Google Scholar
  34. Sukhija BS, Nagabhusanam P, Reddy DV (1996) Groundwater recharge in semi-arid region of India: an overview of results obtained using tracers. Hydrogeol J 3:50–71CrossRefGoogle Scholar
  35. Sukhija BS, Reddy DV, Nagabhusanam P (1998) Isotopic fingerprints of paleoclimates during the last 80,000 years in deep confined groundwaters of southern India. Quat Res 50:165–183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dipankar Saha
    • 1
    Email author
  • S. N. Dwivedi
    • 1
  • Goutam Kr Roy
    • 1
  • D. V. Reddy
    • 2
  1. 1.Central Ground Water Board, Mid Eastern RegionDak Bunglow ChowkIndia
  2. 2.National Geophysical Research InstituteHyderabadIndia

Personalised recommendations