Hydrogeology Journal

, Volume 21, Issue 3, pp 587–604 | Cite as

The cost of meeting increased cooling-water demands for CO2 capture and storage utilizing non-traditional waters from geologic saline formations

  • Geoffrey T. Klise
  • Jesse D. Roach
  • Peter H. Kobos
  • Jason E. Heath
  • Karen A. Gutierrez
Paper

Abstract

Deep (> ∼800 m) saline water-bearing formations in the United States have substantial pore volume that is targeted for storage of carbon dioxide (CO2) and the associated saline water can be extracted to increase CO2 storage efficiency, manage pressure build up, and create a new water source that, once treated, can be used for power-plant cooling or other purposes. Extraction, treatment and disposal costs of saline formation water to meet added water demands from CO2 capture and storage (CCS) are discussed. This underutilized water source may be important in meeting new water demand associated with CCS. For a representative natural gas combined-cycle (NGCC) power plant, simultaneous extraction of brine from the storage formation could provide enough water to meet all CCS-related cooling demands for 177 out of the 185 (96 %) saline formations analyzed in this study. Calculated total cost of water extraction, treatment and disposal is less than 4.00 US Dollars (USD) m−3 for 93 % of the 185 formations considered. In 90 % of 185 formations, treated water costs are less than 10.00 USD tonne−1 of CO2 injected. On average, this represents approximately 6 % of the total CO2 capture and injection costs for the NGCC scenario.

Keywords

CO2 storage Thermoelectric power water use Climate change Groundwater exploration USA 

Le coût de la réponse a accru les demandes en eau de refroidissement pour la capture et le stockage du CO2 utilisant des eaux non conventionnelles provenant de formations géologiques salifères

Résumé

Aux Etats Unis, les aquifères salés profonds (> ∼800 m) ont un volume de pores substantiel, qui est ciblé en vue du stockage du dioxyde de carbone (CO2) et l’eau saline contenue peut être extraite pour augmenter l’efficacité du stockage, gérer la montée en pression et créer une ressource nouvelle qui, une fois traitée, peut être utilisée pour le refroidissement des centrales électriques ou à d’autres fins. Les coûts d’extraction, de traitement et d’évacuation de l’eau de la formation salifère pour répondre aux demandes d’eau accrues suscitées par la capture et le stockage du CO2 (CCS) sont discutés. Cette ressource en eau sous-utilisée peut être importante dans la réponse à la demande d’eau nouvelle émanant de la capture et du stockage du CO2 (CCS). Sur la base d’une centrale électrique à cycle combiné au gaz naturel NGCC représentative, l’extraction simultanée d’eau salée depuis la formation de stockage pourrait fournir assez d’eau pour satisfaire toutes les demandes de refroidissement liées à la capture et au stockage du CO2 (CCS) grâce à 177 des 185 formations salines (96 %) analysées dans cette étude. Le coût total calculé de l’extraction, du traitement et de l’évacuation de l’eau est de moins de 4.00 Dollars Américains (USD) par m3 pour 93 % des 185 formations considérées. Dans 90 % des 185 formations, les coûts de l’eau traitée sont inférieurs à 10.00 USD par tonne de CO2 injecté. En moyenne, cela représente environ 6 % des coûts totaux de capture et d’injection pour le dispositif de cycle combiné au gaz naturel (NGCC).

El costo de satisfacer las demandas crecientes de agua de refrigeración para la captura y almacenamiento del CO2, utilizando aguas no tradicionales de formaciones geológicas salinas

Resumen

Las formaciones profundas (> ∼800 m) que contienen aguas salinas en los Estados Unidos tienen una volumen poral sustancial que es elegido para el almacenamiento de dióxido de carbono (CO2), y el agua salina asociada puede ser extraída para incrementar la eficiencia del almacenamiento de CO2, gestionar la presión acumulada, y crear un nuevo recurso de agua que una vez tratado puede ser usado para el enfriamiento en una planta de energía u otros propósitos. Se discuten los costos de extracción, tratamiento y disposición del agua salina de formación para satisfacer las crecientes demandas de aguas para la captura y almacenamiento (CCS) de CO2. Esta fuente de agua subutilizada puede ser importante para satisfacer las nuevas demandas de agua asociada con CCS. Para una planta de energía de ciclo combinado de gas natural representativo (NGCC), la extracción simultánea de salmuera del almacenamiento de la formación podría proveer suficiente agua para satisfacer con todas las demandas de enfriamiento de las CCS-relacionadas para 177 de 185 (96 %) de las formaciones salinas analizadas en este estudio. El costo total calculado de la extracción, tratamiento y disposición del agua es inferior a 4.00 US dólares (USD) m−3 para el 93 % de las 185 formaciones consideradas. En el 90 % de las 185 formaciones, los costos del agua tratada son menores que 10.00 USD tonelada−1 de CO2 inyectado. En promedio, esto representa aproximadamente el 6 % del costo total del CO2 capturado e inyectado para el escenario de NGCC.

利用咸水层的非常规水满足冷却用水需求的CO2捕集和封存成本估算

摘要

美国的深层(大于800m)咸水含水层中有大量的孔隙体积可以用来进行CO2的封存,相关的咸水可以被抽出来进而提高CO2的封存效率,控制压力的增加,并且可以得到一个新的水源,经过处理后,就可用于发电厂的冷却或者其他目的。本文对为满足CO2捕获和封存对水需求的增加而对咸水层水进行的抽取、净化、排放所消耗的成本进行了讨论。未充分利用的水源在满足CO2捕获和封存对水的新的需求方面非常重要。对于一个有代表性的天然气联合循环(NGCC)电厂,同时抽取储层中的咸水可以提供足够的水,以满足本次研究分析的185个咸水层中的177个(占96%)的所有和CO2的捕获和封存相关的散热需求。在研究的185个咸水层中,93%的咸水层的咸水的抽取、净化和排放的总计算成本不到4美元每立方米。在研究的185个咸水层中,90%的咸水层每注入一吨CO2所消耗的用来净化水的成本不到10美元。平均来说,这大约为天然气联合循环方案的CO2捕获和注入总成本的6%。

O custo de satisfazer necessidades acrescidas de água para arrefecimento na captura e armazenamento de CO2, usando águas não tradicionais provenientes de formações geológicas salinas

Resumo

As formações profundas (> ∼800 m) com água salgada nos Estados Unidos têm um volume de poros substancial e são alvos para o armazenamento de dióxido de carbono (CO2) e a água salgada associada pode ser extraída para aumentar a eficiência do armazenamento do CO2, gerir o aumento da pressão, e criar uma nova origem de água que, uma vez tratada, pode ser usada para arrefecimento de centrais de produção de energia ou outros fins. São discutidos os custos de extração, tratamento e eliminação da água salgada da formação para atender às necessidades adicionais de água da captura e armazenamento de CO2 (CAC). Esta origem de água subutilizada pode ser importante para atingir as novas exigências de água associadas à CAC. Para uma central de produção de energia a gás natural com tecnologia de ciclo-combinado (GNCC) representativa, a extração simultânea da água salgada da formação de armazenamento pode fornecer água suficiente para satisfazer todas as necessidades de arrefecimento associadas à CAC em 177 das 185 (96 %) formações salinas analisadas neste estudo. O custo total calculado da extração, tratamento e eliminação da água é inferior a 4.00 Dólares Americanos (USD) m−3 para 93 % das 185 formações consideradas. Em 90 % das 185 formações, os custos da água tratada são inferiores a 10.00 USD tonelada−1 de CO2 injetado. Em média, isto representa aproximadamente 6 % dos custos totais de captura e injeção de CO2 para o cenário do GNCC.

References

  1. Aines RD, Wolery TJ, Bourcier WL et al (2011) Fresh water generation from aquifer-pressured carbon storage: feasibility of treating saline formation waters. Energ Procedia 4:2269–2276CrossRefGoogle Scholar
  2. Altman SJ, Cappelle M, Sattler A et al (2010) Nanofiltration treatment options for thermoelectric power plant water treatment demands. SAND2012-3915, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  3. Altman SJ, Jensen RP, Cappelle MA et al (2011) Membrane treatment of side-stream cooling tower water for reduction of water usage. Desalination 288:177–183. doi:10.1016/j.desal.2011.09.052 Google Scholar
  4. Bergman PD, Winter EM (1995) Disposal of carbon dioxide in aquifers in the US. Energy Convers Manag 36:6–9CrossRefGoogle Scholar
  5. Bourcier WL, Wolery TJ, Wolfe T et al (2011) A preliminary cost and engineering estimate for desalinating produced formation water associated with carbon dioxide capture and storage. Int J Greenh Gas Control 5:1319–1328CrossRefGoogle Scholar
  6. Brennan ST, Burruss RC, Merrill MD et al (2010) A probabilistic assessment methodology for evaluation of geologic carbon dioxide storage. US Geol Surv Open-File Rep 2010–1127Google Scholar
  7. Buscheck TA, Sun Y, Yue H et al (2011) Combining brine extraction, desalination, and residual-brine reinjection with CO2 storage in saline formations: implications for pressure management, capacity, and risk mitigation. Energ Procedia 4:4283–4290CrossRefGoogle Scholar
  8. Buscheck TA, Sun Y, Chen M et al (2012) Active CO2 reservoir management for carbon storage: analysis of operational strategies to relieve pressure buildup and improve injectivity. Int J Greenh Gas Control 6:230–245CrossRefGoogle Scholar
  9. Carr TR, Iqbal A, Callaghan N et al (2009) A national look at carbon capture and storage: national carbon sequestration database and geographical information system (NatCarb). Energ Procedia 1:2841–2847CrossRefGoogle Scholar
  10. Court B, Celia MA, Nordbotten JM et al (2011) Active and integrated management of water resources throughout CO2 capture and sequestration operations. Energ Procedia 4:4221–4229CrossRefGoogle Scholar
  11. Court B, Elliot TR, Dammel J et al (2012) Promising synergies to address water, sequestration, legal, and public acceptance issues associated with large-scale implementation of CO2 sequestration. Mitig Adapt Strateg Glob Chang 17:569–599CrossRefGoogle Scholar
  12. Deutsch C, Journel A (1992) GSLIB: geostatistical software library and user’s guide. Oxford University Press, Oxford, UKGoogle Scholar
  13. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. Wiley, New YorkGoogle Scholar
  14. Dooley J (2011) Valuing national and basin level geologic CO2 storage capacity assessments in a broader context. Int J Greenh Gas Control 5:177–178CrossRefGoogle Scholar
  15. Finley R (2005) An assessment of geological carbon sequestration options in the Illinois Basin, final report. Illinois State Geol Survey, Urbana-Champaign , IL. doi:10.2172/897315
  16. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  17. Goodman A, Hakala A, Bromhal G et al (2011) US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. Int J Greenh Gas Control 5:952–965CrossRefGoogle Scholar
  18. Gulf Coast Carbon Center (2003) Brine-formation database. Gulf Coast Carbon Center, Austin, TX. http://www.beg.utexas.edu/environqlty/co2seq/dispslsaln.htm. Accessed 24 Aug 2011
  19. Harto CB, Veil JA (2011) Management of water extracted from carbon sequestration projects. ANL/EVS/R-11/1, Argonne National Laboratory, Lemont, IL Google Scholar
  20. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652CrossRefGoogle Scholar
  21. Heath JE, Kobos PH, Roach JD et al (2012) Geologic heterogeneity and economic uncertainty of subsurface carbon dioxide storage. SPE Econ Manag J 4:32–41Google Scholar
  22. Hjellming CA (1993) Atlas of major Rocky Mountain gas reservoirs. New Mexico Bureau of Mines and Mineral Resources, Santa Fe, NMGoogle Scholar
  23. Hoeksema RJ, Kitanidis PK (1985) Analysis of the spatial structure of properties of selected aquifers. Water Resour Res 21:563–572CrossRefGoogle Scholar
  24. Hovorka SD (1999) Project evaluation: phase I: optimal geological environments for carbon dioxide disposal in saline water-bearing formations in the United States. The University of Texas, Bureau of Economic Geology, Austin, TXGoogle Scholar
  25. Hovorka SD, Romero ML, Trevino RH et al (2000) Project evaluation: phase II: optimal geological environments for carbon dioxide disposal in brine-baring formations (aquifers) in the United States. The University of Texas, Bureau of Economic Geology, Austin, TXGoogle Scholar
  26. Kenny RF, Barber NL, Hutson SS et al (2009) Estimated use of water in the United States in 2005. US Geol Surv Circ 1344Google Scholar
  27. Kobos PH, Roach JD, Klise GT et al (2010) Storing carbon dioxide in saline formations: analyzing extracted water treatment and use for power plant cooling. 29th USAE/IAEE North American Conference, Calgary, AB, October 14–16, 2010Google Scholar
  28. Kobos PH, Cappelle MA, Krumhansl JL et al (2011a) Combining power plant water needs and carbon dioxide storage using saline formations: implications for carbon dioxide and water management policies. Int J Greenh Gas Control 5:899–910CrossRefGoogle Scholar
  29. Kobos PH, Roach JD, Klise GT et al (2011b) Study of the use of saline formations for combined thermoelectric power plant water needs and carbon sequestration at a regional scale: phase III report. SAND2011-5776P, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  30. Kobos PH, Krumhansl JL, Dewars TA et al (2011c) Thermoelectric power plant water demands using alternative water supplies: power demand options in regions of water stress and future carbon management. SAND2011-5808P, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  31. Kobos PH, Roach JD, Heath J E et al (2011d) Economic uncertainty in subsurface CO2 storage: geological injection limits and consequences for carbon management costs. 30th USAEE/IAEE North American Conference, Washington, DC, October 9–12, 2012Google Scholar
  32. Litynski J, Plasynski S, Spangler L et al (2009) US Department of Energy’s regional carbon sequestration partnership program: overview. Energ Procedia 1:3959–3967CrossRefGoogle Scholar
  33. Mancini EA, Mink RM et al (1987) Environments of deposition and petroleum geology of Tuscaloosa Group (Upper Cretaceous), South Carlton and Pollard Fields, southwestern Alabama. Am Assoc Pet Geol Bull 71:1128–1142Google Scholar
  34. Miller J (2003) Review of water resources and desalination technologies. SAND2003-0800, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  35. National Energy Technology Laboratory (NETL) (2008a) Estimating freshwater needs to meet future thermoelectric generation requirements: 2008 update. DOE/NETL-400/2008/1339, NETL, Morgantown, WV Google Scholar
  36. National Energy Technology Laboratory (NETL) (2008b) National Carbon Sequestration Database and Geographic Information System (NatCarb). NETL, Morgantown, WV. http://www.natcarb.org/. Accessed 28 March 2012
  37. National Energy Technology Laboratory (NETL) (2009) Water requirements for existing and emerging thermoelectric plant technologies: April 2009. DOE/NETL-402/080108, NETL, Morgantown, WVGoogle Scholar
  38. National Oceanic and Atmospheric Administration (NOAA) (2009) National Oceanographic Data Center World Ocean Atlas for Temperature. NOAA, Washington, DC. http://www.nodc.noaa.gov/cgi-bin/OC5/WOA09F/woa09f.pl?parameter=t. Accessed 19 Sept 2011
  39. National Oceanic and Atmospheric Administration (NOAA) (2011) NOS Hydrographic Survey Data. National Geophysical Data Center, Washington, DC. http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html. Accessed 19 Sept 2011
  40. Orr FM (2009) Onshore geologic storage of CO2. Science 325:1656–1658CrossRefGoogle Scholar
  41. SECURE Water Act (2009) 42 USC § 10367. http://www.law.cornell.edu/uscode/text/42/10367. Accessed 27 March 2012
  42. Southern Methodist University (2008) SMU Heat Flow Database (combined). Southern Methodist University, Dallas, TX. http://smu.edu/geothermal/georesou/08%20Data/SMU_heatflowdatabases9_2008.xls. Accessed 29 Aug 2011
  43. Sullivan EJ, Chu S, Stauffer PH et al (2012) A CO2-PENS model of methods and costs for treatment of water extracted during geologic carbon sequestration. Desalin Water Treat. doi:10.1080/19443944.2012.714727
  44. Thomson A (1982) Preservation of porosity in the deep Woodbine/Tuscaloosa Trend, Louisiana. J Petrol Technol 34:1156–1162Google Scholar
  45. Tidwell VC, Kobos PH, Malczynski LA et al (2012) Exploring the water-thermoelectric power nexus. J Water Res Plann Manag 138(5):491–501. doi:10.1061/(ASCE)WR.1943-5452.0000222 Google Scholar
  46. United States Bureau of Reclamation (USBOR) (2003) Desalting handbook for planners, 3rd edn. Desalination Research and Development Program report No. 72. US Department of the Interior, Bureau of Reclamation, Washington, DCGoogle Scholar
  47. United States Geological Survey (USGS) (2011) Energy resources program: oil and gas. http://energy.usgs.gov/OilGas.aspx. Accessed 12 July 2011
  48. Williams RH, Liu G, Kreutz TG et al (2011) Alternatives for decarbonizing existing USA coal power plant sites. Energ Procedia 4:1843–1850CrossRefGoogle Scholar
  49. Wilson EJ, Friedmann SJ, Pollak MF (2007) Research for deployment: incorporating risk, regulation, and liability for carbon capture and sequestration. Environ Sci Technol 41:5945–5952CrossRefGoogle Scholar
  50. Zhai H, Rubin ES (2010) Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage. Energ Policy 28:5653–5660CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • Geoffrey T. Klise
    • 1
  • Jesse D. Roach
    • 1
  • Peter H. Kobos
    • 1
  • Jason E. Heath
    • 2
  • Karen A. Gutierrez
    • 3
  1. 1.Sandia National Laboratories, Earth Systems Analysis Dept.AlbuquerqueUSA
  2. 2.Sandia National Laboratories, Geomechanics Dept.AlbuquerqueUSA
  3. 3.Sandia National Laboratories, Geotechnology and Engineering Dept.AlbuquerqueUSA

Personalised recommendations