Advertisement

Hydrothermal models of the Perth metropolitan area, Western Australia: implications for geothermal energy

Modèles hydrothermaux de la région métropolitaine de Perth, Ouest Australien: implications pour l’énergie géothermique

Los modelos hidrotermales del área metropolitana de Perth, Australia Occidental: implicancias para la energía geotermal

澳大利亚西部珀斯城区的热水模型:对地热能的启示

Modelos hidrotermais da área metropolitana de Perth, Austrália Ocidental: implicações para a energia geotérmica

Abstract

Hydrothermal simulations are used to provide insight into the subsurface thermal regime of the Perth metropolitan area (PMA) in Western Australia. High average permeabilities and estimated fluid flow rates in shallow aquifers of the PMA suggest that advection and convection may occur in these aquifers. These processes are simulated, using a new geological model of the PMA to constrain the geometry of aquifers, aquitards and faults. The results show that advection has a strong influence on subsurface temperature, especially in the north of the PMA, where aquifer recharge creates an area of anomalously low temperature. Convection may be important, depending on the permeability of the Yarragadee Aquifer. If convection occurs, it creates thermal highs and lows with a spacing of approximately 5 km. Some of these thermal anomalies migrate over geological time due to coupling between advection and convection, but they are stationary on human timescales. Fault permeability influences the pattern of convection. Advection and convection cause variations in the geothermal gradient which cannot be predicted by conductive models; therefore, these processes should be considered in any model that is used for assessment of geothermal resources in the PMA.

Résumé

Des simulations sont utilisées pour fournir une représentation du régime des circulations hydrothermales de subsurface dans la région métropolitaine de Perth (AMP) en Australie de l’Ouest. Des perméabilités de moyenne élevée et les vitesses estimées du fluide dans les aquifères superficiels de l’AMP suggèrent qu’advection et convection peuvent s’y produire. Ces processus sont simulés en utilisant un nouveau modèle géologique de l’AMP pour cadrer la géométrie des aquifères, des aquitards et des failles. Les résultats montrent que l’advection a une forte influence sur la température de subsurface, spécialement dans le Nord de l’AMP, où la recharge de l’aquifère crée une zone de température anormalement basse. La convection peut être importante, en lien avec la perméabilité de l’Aquifère Yarragadee. Si la convection se produit, elle crée des points chauds et moins chauds espacés d’environ 5 km. Certaines de ces anomalies thermiques migrent au cours des temps géologiques du fait du couplage entre advection et convection, mais elles sont stables aux échelles humaines. La perméabilité des failles influence le modèle de convection. Advection et convection causent des variations du gradient géothermique, qui ne peuvent être prédites par les modèles conductifs; par conséquent, il faut que ces phénomènes soient pris en compte dans tout modèle utilisé pour évaluer les ressources géothermiques dans l’AMP.

Resumen

Las simulaciones hidrotermales son usadas para proveer una visión sobre el régimen termal subsuperficial del área metropolitana de Perth (PMA) en Australia Occidental. Las altas permeabilidades medias y las tasas de flujo de fluidos estimadas en los acuíferos someros de la PMA sugieren que la advección y la convección pueden ocurrir en estos acuíferos. Estos procesos son simulados, usando un nuevo modelo geológico del PMA para limitar la geometría de los acuíferos, acuitardos y fallas. Los resultados muestran que la advección tiene una fuerte influencia sobre la temperatura subsuperficial, especialmente en el norte del PMA, donde la recarga del acuífero crea un área de temperaturas anómalamente bajas. La convección puede ser importante, dependiendo de la permeabilidad del Acuífero Yarragadee. Si la convección ocurre, se crean altos y bajos termales con un espaciamiento de aproximadamente 5 km. Algunas de estas anomalías termales migran a través del tiempo geológico debido al acoplamiento entre advección y convección., pero ellos son estacionarios en escalas de tiempo humanas. La permeabilidad de la falla influye en el patrón de la convección. La advección y la convección causan variaciones en el gradiente geotermal que no puede ser predicho por modelos conductivos; además estos procesos deben ser considerados en cualquier modelo que es usado para la evaluación de los recursos geotermales en el PMA.

摘要

采用水热模拟方法研究了澳大利亚西部珀斯城区(PMA)的地热状态。PMA浅层含水层的高渗透率均值及流体流动速率估计值表明含水层中存在传导与对流。利用PMA的新地质模型限制含水层、隔水层、断层的几何形体,用以模拟这些过程。结果表明对流对地下温度影响很大,尤其是在PMA北部,含水层补给引起一个低温异常区。传导是重要的,取决于Yarragadee含水层的渗透性。如果传导发生,在大约5 km的间隔内引起高热点和低热点。有些热异常由于传导与对流相耦合,可随地质时间而变化,但是相对于人类时间尺度是固定的。断层渗透性影响传导的类型。对流与传导引起地热梯度的变化,但不能用传导模型预测,所以这些过程应该在PMA地热资源评价模型中予以考虑。

Resumo

São utilizadas simulações hidrotermais para fornecer informações sobre o regime térmico do subsolo na área metropolitana de Perth (AMP) na Austrália Ocidental. Altas permeabilidades médias e estimativas de taxas de escoamento em aquíferos pouco profundos na AMP sugerem que a advecção e a convecção podem ocorrer nestes aquíferos. Esses processos são simulados, usando um novo modelo geológico da AMP para restringir a geometria de aquíferos, aquitardos e falhas. Os resultados mostram que a advecção tem uma forte influência sobre a temperatura do subsolo, especialmente no norte da AMP, onde a recarga cria uma área de temperaturas anormalmente baixas. A convecção pode ser importante, dependendo da permeabilidade do aquífero de Yarragadee. Se a convecção ocorrer, cria zonas térmicas mais elevadas e mais baixas com um espaçamento de cerca de 5 km. Algumas dessas anomalias térmicas migram ao longo do tempo geológico devido ao acoplamento entre a advecção e a convecção, mas são estacionárias à escala de tempo humana. A permeabilidade das falhas influencia o padrão da convecção. A advecção e a convecção causam variações no gradiente geotérmico que não pode ser previsto por modelos condutivos; portanto, esses processos devem ser considerados em qualquer modelo a ser utilizado para a avaliação dos recursos geotérmicos na AMP.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Antonellini M, Aydin A (1994) Effect of faulting on fluid flow in porous sandstones: petrophysical properties. AAPG Bull 78:355–377

  2. Arya A, Hewett TA, Larson RG et al (1988) Dispersion and reservoir heterogeneity. SPE Reserv Eng 3:139–148

  3. Aydin A (2000) Fractures, faults, and hydrocarbon entrapment, migration and flow. Mar Pet Geol 17:797–814

  4. Bächler D, Kohl T, Rybach L (2003) Impact of graben-parallel faults on hydrothermal convection: Rhine Graben case study. Phys Chem Earth 28:431–441

  5. Barnicoat AC, Sheldon HA, Ord A (2009) Faulting and fluid flow in porous rocks and sediments: implications for mineralisation and other processes. Miner Deposita. doi:10.1007/s00126-009-0236-4

  6. Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

  7. Bjørlykke K, Mo A, Palm E (1988) Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. Mar Pet Geol 5:338–351

  8. Blöcher MG, Zimmermann G, Moeck I et al (2010) 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir. Geofluids 10:406–421

  9. Cacace M, Kaiser BO, Lewerenz B et al (2010) Geothermal energy in sedimentary basins: what we can learn from regional numerical models. Chemie Erde 70:33–46

  10. Clauser C (1992) Permeability of crystalline rocks. Eos 73:231–237

  11. Clauser C (2003) Numerical simulation of reactive flow in hot aquifers: SHEMAT and Processing SHEMAT. Springer, Berlin

  12. Cooper GT, Beardsmore GR (2010) Engineered geothermal systems in the Australian context: resource definition in conductive thermal settings. Proceedings World Geothermal Congress 2010, Bali, April 2010, pp 1–11

  13. Corbel S, Schilling O, Horowitz FG et al. (2012) Identification and geothermal influence of faults in the Perth metropolitan area, Australia. Paper presented at the Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford, CA, January 2012

  14. Crostella A, Backhouse J (2000) Geology and petroleum exploration of the central and southern Perth Basin, Western Australia. Western Australia Geological Survey Report 57, WAGS, Perth, 85 pp

  15. CSIRO (2007) PressurePlot. www.pressureplot.com. Cited 19 Aug 2011

  16. Cymod Systems (2009) Perth Regional Aquifer Modelling System (PRAMS) model development: calibration of the Coupled Perth Regional Aquifer Model PRAMS 3.0. Hydrogeological Record Series HG28, Department of Water, Western Australia, Perth

  17. Davidson WA (1995) Hydrogeology and groundwater resources of the Perth region. Geological Survey of Western Australia Bulletin, Western Australia, 142 pp

  18. Davidson WA, Yu X (2007) Perth Region Aquifer Modelling System - PRAMS, Hydrogeology and groundwater modelling. Hydrogeology Record Series HG20, Department of Water, Western Australia, Perth

  19. Department of Water (2011) Geographic data atlas. www.water.wa.gov.au/Tools/Maps+and+atlases/Geographic+data+atlas/default.aspx. Cited 29th July 2011

  20. Diersch HJG, Kolditz O (1998) Coupled groundwater flow and transport: 2. thermohaline and 3D convection systems. Adv Water Resour 21:401–425

  21. Facer RA (1991) Temperature corrections for bore hole data as part of thermal state, source and maturation investigations of basins. Explor Geophys 22:567–574

  22. Fisher QJ, Knipe RJ (2001) The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian continental shelf. Mar Pet Geol 18:1063–1081

  23. Fisher QJ, Casey M, Harris SD et al (2003) Fluid-flow properties of faults in sandstone: the importance of temperature history. Geology 31:965–968

  24. Fournier RO (1990) Double-diffusive convection in geothermal systems: the Salton Sea, California, geothermal system as a likely candidate. Geothermics 19:481–496

  25. Geoscience Australia (2012) Earthquake database. www.ga.gov.au/earthquakes/searchQuake.do. Cited 1 April 2012

  26. Geointrepid (Louides Enterprises Pty Ltd), Gibson H, Bonet C et al (2011) 3D Geological model building, and 3D temperature and heat flow calculation for the northern Perth Basin. Geological Survey of Western Australia Record 2011/6, GSWA, Perth

  27. Horton CW, Rogers FT (1945) Convection currents in a porous medium. J Appl Phys 16:367–370

  28. Hot Dry Rocks Pty Ltd (2008) Geothermal energy potential in selected areas of Western Australia (Perth Basin). Hot Dry Rocks Pty Ltd, Melbourne, Australia

  29. IOC, SCOR, IAPSO (2010) The international thermodynamic equation of seawater - 2010: calculation and use of thermodynamic properties. Manuals and Guides 56, Intergovernmental Oceanographic Commission, Paris

  30. Knipe RJ (1992) Faulting processes and fault seal. Norwegian Petroleum Society, Spec. Pub., NPF, Oslo, pp 325–342

  31. Knipe RJ (1993) The influence of fault zone processes and diagenesis on fluid flow. In: Horbury AD, Robinson AG (eds) Diagenesis and basin development, AAPG Studies in Geology, AAPG, Tulsa, OK, pp 135–154

  32. Langevin CD, Thorne DT, Jr., Dausman AM et al. (2008) SEAWAT version 4: a computer program for simulation of multi-species solute and heat transport. US Geol Surv Tech Methods, book 6, chap A22, USGS, Reston, VA

  33. Lapwood ER (1948) Convection of a fluid in a porous medium. Proc Camb Philos Soc 44:508–521

  34. Li Y-H, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta 38:703–714

  35. Magri F (2009) Derivation of the coefficients of thermal expansion and compressibility for use in FEFLOW. FEFLOW Finite element subsurface flow and transport simulation system, White papers vol III, WASY, Berlin, pp 13–24

  36. Magri F, Akar T, Gemici U et al (2010) Deep geothermal groundwater flow in the Seferihisar–Balçova area, Turkey: results from transient numerical simulations of coupled fluid flow and heat transport processes. Geofluids 10:388–405

  37. McKibbin R, Tyvand PA (1982) Anisotropic modelling of thermal convection in multilayered porous media. J Fluid Mech 118:315–339

  38. McKibbin R, Tyvand PA (1983) Thermal convection in a porous medium composed of alternating thick and thin layers. Int J Heat Mass Transf 26:761–780

  39. Meredith K, Cendón DI, Pigois J-P et al (2012) Using 14C and 3H to delineate a recharge ‘window’ into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia. Sci Total Environ 414:456–469

  40. Mooney WD, Beroza GC, Kind R (2007) Fault zones from top to bottom: a geophysical perspective. In: Handy MR, Hirth G, Hovius N (eds) Tectonic faults: agents of change on a dynamic Earth. MIT Press, Cambridge, MA, pp 9–46

  41. Mory AJ, Iasky RP (1996) Stratigraphy and structure of the onshore northern Perth Basin. Western Australia Geological Survey Report, Perth, 46 pp

  42. Nield DA (1994) Estimation of an effective Rayleigh number for convection in a vertically inhomogeneous porous-medium or clear fluid. Int J Heat Fluid Flow 15:337–340

  43. Nield DA, Bejan A (1992) Convection in porous media. Springer, New York

  44. Nield D, Simmons C (2007) A discussion on the effect of heterogeneity on the onset of convection in a porous medium. Transport Porous Media 68:413–421

  45. Olierook HKH (2011) Fault-related strain accommodation and diagenesis in the Northern Perth Basin: implications for fluid pathways. Honours Thesis, Curtin University, Australia

  46. Phillips OM (1991) Flow and reactions in permeable rocks. Cambridge University Press, Cambridge, UK

  47. Playford PE, Cockbain AE, Low GH (1976) Geology of the Perth Basin Western Australia. Bulletin, Geological Society of Western Australia, Perth, 124 pp

  48. Poisson A, Papaud A (1983) Diffusion coefficients of major ions in seawater. Mar Chem 13:265–280

  49. Raffensperger JP, Vlassopoulos D (1999) The potential for free and mixed convection in sedimentary basins. Hydrogeol J 7:505–520

  50. Reid LB, Bloomfield G, Ricard L et al (2012a) Shallow geothermal regime in the Perth metropolitan area. Aust J Earth Sci 59:1033–1048

  51. Reid LB, Corbel S, Poulet T et al (2012b) Hydrothermal modelling in the Perth Basin, Western Australia. Final report of project 3, Perth Basin assessment program, Western Australian Geothermal Centre of Excellence. CSIRO report EP121504, CSIRO, Perth

  52. Ricard LP, Reid LB, Corbel S (2012) Deep temperature measurement analysis in the onshore Perth Basin, Western Australia. In: Middleton KF and Gessner K (eds) West Australian Geothermal Energy Symposium, Abstracts, vol 2, Perth, April 2012, pp 25–26

  53. Rowland JV, Sibson RH (2004) Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids 4:259–283

  54. Rühaak W, Rath V, Clauser C (2010) Detecting thermal anomalies within the Molasse Basin, southern Germany. Hydrogeol J 18:1897–1915

  55. Sheldon HA, Barnicoat AC, Ord A (2006) Numerical modelling of faulting and fluid flow in porous rocks: an approach based on critical state soil mechanics. J Struct Geol 28:1468–1482

  56. Sheldon HA, Reid LB, Florio B et al. (2011) Convection or conduction? Interpreting temperature data from sedimentary basins. In: Budd AR (ed) Proceedings of the 2011 Australian Geothermal Energy Conference, 16–18 November, Melbourne, Geoscience Australia Record, Canberra, Australia, pp 233–238

  57. Sheldon HA, Florio BJ, Trefry MG et al (2012) The potential for convection and implications for geothermal energy in the Perth Basin, Western Australia. Hydrogeol J. doi:10.1007/s10040-012-0886-7

  58. Shipton ZK, Cowie PA (2001) Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo Sandstone, Utah. J Struct Geol 23:1825–1844

  59. Simmons CT, Fenstemaker TR, Sharp JM (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52:245–275

  60. Simmons CT, Kuznetsov AV, Nield DA (2010) Effect of strong heterogeneity on the onset of convection in a porous medium: importance of spatial dimensionality and geologic controls. Water Resour Res 46:W09539. doi:10.1029/2009wr008606

  61. Strategen (2004) South West Yarragadee-Blackwood groundwater area. Water study report. Water and Rivers Commission of Western Australia, Perth, 98 pp

  62. Trevisan OV, Bejan A (1987) Mass and heat transfer by high Rayleigh number convection in a porous medium heated from below. Int J Heat Mass Transf 30:2341–2356

  63. Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. Wiley, New York

  64. Vosteen HD, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth 28:499–509

  65. Wagner W, Cooper JR, Dittmann A et al (2000) The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. J Eng Gas Turbines Power Trans ASME 122:150–182

  66. Waples DW, Waples JS (2004) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids, part 1: minerals and nonporous rocks. Nat Resour Res 13:97–122

Download references

Acknowledgments

This work was conducted by the Western Australian Geothermal Centre of Excellence (WAGCOE), a joint initiative between the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the University of Western Australia and Curtin University. WAGCOE was funded by the government of Western Australia. CSIRO funded an internship for O. Schilling to conduct this work. T. Poulet (CSIRO) wrote Python scripts to import meshes from SKUA into FEFLOW.

Author information

Correspondence to Heather A. Sheldon.

Electronic supplementary material

Following is the link to the electronic supplementary material.

(MPG 1.72 mb)

(MPG 1.92 mb)

(MPG 2.20 mb)

(MPG 2.15 mb)

(MPG 2.65 mb)

ESM 1

(MPG 1.72 mb)

ESM 2

(MPG 1.92 mb)

ESM 3

(MPG 2.20 mb)

ESM 4

(MPG 2.15 mb)

ESM 5

(MPG 2.65 mb)

Appendix: Rayleigh number analysis

Appendix: Rayleigh number analysis

For the case of a horizontal aquifer with uniform properties and boundary conditions, convection is predicted to occur if the Rayleigh number (Ra) exceeds a critical value (Ra*) (Horton and Rogers 1945; Lapwood 1948). Ra is defined as:

$$ Ra=\frac{{k\alpha \rho_0^2{c_f}gH\varDelta T}}{{\mu \lambda }} $$
(1)

where k is permeability (m2), α the thermal expansion coefficient of the pore fluid (1/K), ρ 0 the reference fluid density (kg/m3), c f the specific heat capacity of the fluid (J/kg/K), g is gravity (m/s2), H the thickness of the aquifer (m), ∆T the difference in temperature between top and bottom of the aquifer (K), μ is fluid viscosity (Pa s) and λ the effective thermal conductivity of the fluid-saturated rock (W/m/K). Equation (1) can be used to express the minimum permeability for convection as:

$$ {{k}_{{\min }}} = \frac{{\mu \lambda }}{{\alpha \rho _{0}^{2}{{c}_{f}}gH\Delta T}}R{{a}^{*}} $$
(2)

Convection can occur if permeability meets or exceeds k min.

Equation 2 was used to estimate the permeability required for convection in the Yarragadee Aquifer, with aquifer thickness (H) obtained from the PMA geological model. Fluid properties (μ, α, ρ 0, c f ) were calculated from the IAPWS equation of state for water (Wagner et al. 2000) at temperature and pressure conditions corresponding to the mid-depth of the aquifer. ∆T was calculated from the thickness of the aquifer, assuming a temperature gradient of 20 °C/km. λ was calculated from the properties listed in Tables 2 and 3. Ra* was assumed to be 12, this being the most appropriate value for a confined aquifer (Nield and Bejan 1992).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schilling, O., Sheldon, H.A., Reid, L.B. et al. Hydrothermal models of the Perth metropolitan area, Western Australia: implications for geothermal energy. Hydrogeol J 21, 605–621 (2013) doi:10.1007/s10040-012-0945-0

Download citation

Keywords

  • Australia
  • Geothermal
  • Convection
  • Numerical modelling
  • Perth Basin