Advertisement

Hydrogeology Journal

, Volume 21, Issue 1, pp 281–298 | Cite as

Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA)

  • Tristan P. Wellman
  • Clifford I. VossEmail author
  • Michelle A. Walvoord
Paper

Abstract

In cold regions, hydrologic systems possess seasonal and perennial ice-free zones (taliks) within areas of permafrost that control and are enhanced by groundwater flow. Simulation of talik development that follows lake formation in watersheds modeled after those in the Yukon Flats of interior Alaska (USA) provides insight on the coupled interaction between groundwater flow and ice distribution. The SUTRA groundwater simulator with freeze–thaw physics is used to examine the effect of climate, lake size, and lake–groundwater relations on talik formation. Considering a range of these factors, simulated times for a through-going sub-lake talik to form through 90 m of permafrost range from ∼200 to > 1,000  years (vertical thaw rates < 0.1–0.5  m yr−1). Seasonal temperature cycles along lake margins impact supra-permafrost flow and late-stage cryologic processes. Warmer climate accelerates complete permafrost thaw and enhances seasonal flow within the supra-permafrost layer. Prior to open talik formation, sub-lake permafrost thaw is dominated by heat conduction. When hydraulic conditions induce upward or downward flow between the lake and sub-permafrost aquifer, thaw rates are greatly increased. The complexity of ground-ice and water-flow interplay, together with anticipated warming in the arctic, underscores the utility of coupled groundwater-energy transport models in evaluating hydrologic systems impacted by permafrost.

Keywords

Cold-regions Permafrost Groundwater modeling Climate change Alaska (USA) 

Impact du climat, de la dimension du lac, de l’écoulement de l’eau supra-et infra-pergélisol sur l’évolution d’un lac de talik, Yukon Flats, Alaska, USA

Résumé

Dans les régions froides, les systèmes hydrologiques présentent, à l’intérieur de zones contrôlées par le permafrost de façon pérenne ou saisonnière, des surfaces libres de glace (taliks) renforcées par l’écoulement souterrain. La simulation du développement d’un talik qui suit la formation d’un lac sur des bassins versants modelés par suite dans le Yukon Flat de l’Alaska intérieur (USA) fournit un aperçu sur l’interaction entre l’écoulement souterrain et la distribution de la glace. Le simulateur d’écoulement souterrain SUTRA avec physique du gel–dégel est utilisé pour examiner l’effet du climat, de la dimension du lac, et de la relation lac-eau souterraine sur la formation du talik. Considérant une série de ces facteurs, les temps simulés pour l’établissant d’un talik infra-lacustre à travers 90 m de pergélisol s’échelonnent de ∼200 à >1,000 années (taux de dégel vertical <0.1–0.5 m an−1). Les cycles saisonniers de température le long des rivages du lac impactent l’écoulement supra-pergélisol et les processus cryologiques tardifs. Un climat plus chaud accélère un dégel complet du pergélisol et renforce l’écoulement saisonnier dans l’horizon supra-pergélisol. Avant la formation d’un talik ouvert, le dégel du pergélisol infra-lacustre est précédé de la conduction de chaleur. Quand les conditions hydrauliques induisent un écoulement ascendant ou descendant entre le lac et l’aquifère infra-pergélisol, les taux de dégel sont grandement augmentés. La complexité de l’interaction glace-sol et écoulement de l’eau, avec simultanément le réchauffement anticipé de l’arctique, souligne l’utilité des modèles d’échange couplant eau-énergie dans la compréhension des systèmes hydrologiques impactés par le pergélisol.

Impactos del clima, tamaño del lago y flujo subterráneo del supra y sub permafrost en la evolución del talik de un lago, Yukon Flats, Alaska (EEUU)

Resumen

En regiones frías, los sistemas hidrológicos poseen zonas libres de hielo, estacionales y perennes (taliks), dentro de áreas de permafrost que controlan y se incrementan por el flujo de agua subterránea. La simulación del desarrollo del talik que le sigue a la formación del lago en las cuencas modeladas en el Yukon Flats del interior de Alaska (EEUU) provee ideas sobre la interacción acoplada entre el flujo de agua subterránea y la distribución del hielo. El simulador de agua subterránea SUTRA con la física de la congelación–descongelación se usa para examinar el efecto del clima, tamaño del lago, y las relaciones lago – agua subterránea en la formación del talik. Teniendo en cuenta una serie de estos factores, los tiempos simulados con un pasaje en el sub-lago del talik a través de 90 m de permafrost varía entre ∼200 a >1000 años (tasa de descongelamiento vertical <0.1–0.5 m yr−1). Los ciclos de temperaturas estacionales a lo largo de las márgenes del lago impactan al flujo supra-permafrost y a la última etapa de los procesos criológicos. Los climas cálidos aceleran el descongelamiento completo del permafrost y aumenta el flujo dentro de la capa del supra-permafrost. Antes de abrir la formación del talik, el deshielo del permafrost del sub lago es dominado por la conducción del calor. Cuando las condiciones hidráulicas inducen el flujo hacia arriba o hacia abajo entre el lago y el acuífero sub-permafrost, las tasas de deshielo son mucho mayores. La complejidad del hielo en el terreno y el flujo de agua interaccionan, conjuntamente con calentamientos en el ártico, lo cual pone de relieve la utilidad de los modelos acoplados de transporte de agua subterránea – energía en la evaluación de sistemas hidrológicos impactados por el permafrost.

气候、湖泊规模和永久冻土层上下的地下水流对阿拉斯加州育空平原(美国)湖泊-层间不冻层演化的影响

摘要

在寒冷的地区,水文系统占据着位于永久冻土地区中的季节性和多年性不冻区(层间不冻层),永久冻土层控制着地下水流并在水流的作用下得到强化。湖泊在流域形成,首先对阿拉斯加州(美国)内部的育空平原的流域进行了模拟,随后进行的层间不冻层演化的模拟显示,地下水流与冰的分布具有耦合的相互作用。SUTRA地下水模拟器与冻融物理学相结合,用来检测气候、湖泊规模和湖泊-地下水相互关系对层间不冻层形成的影响。考虑到这一系列的因素,为了形成通过90m的永久冻土层且贯穿湖底的层间不冻层,模拟的时间段从大约200年变化到1000年以上(垂直的解冻速率 < 0.1–0.5 m yr−1)。湖泊边缘的季节性温度循环影响永久冻土层之上的水流及后期的低温逻辑过程。温暖的气候加速了完全永久冻土层的解冻,增强了永久冻土层之上岩层内的季节性水流。在开放的居间不冻层形成之前,湖泊之下的永久冻土层的解冻主要受热传导控制。当水力条件导致在湖泊和永久冻土层下的含水层间形成上升水流或下降水流时,解冻的速率将大幅提高。地下冰层与水流相互作用的复杂性,加上北极地区所预期的气候变暖,强调了地下水-能量迁移耦合模型在评估受永久冻土层影响的水文系统时的实用性。

Impacto do clima, dimensão do lago e fluxo de água subterrânea acima e sob o permafrost na evolução da associação lago-talik, Yukon Flats, Alaska (EUA)

Resumo

Nas regiões frias, os sistemas hidrológicos possuem zonas sazonal ou perenemente livres de gelo no seio de permafrost (talik) que controlam ou são potenciadas pelo escoamento de água subterrânea. A simulação do desenvolvimento de taliks que se sucedem à formação de lagos em bacias hidrográficas, modelados segundo as ocorrências em Yukon Flats, no interior do Alaska (EUA), permite perceber a interação acoplada entre o escoamento de água subterrânea e a distribuição do gelo. Foi usado o modelo de simulação de água subterrânea SUTRA incluindo a física da congelação-fusão para examinar o efeito do clima, da dimensão do lago e as relações lago-água subterrânea na formação do talik. Considerando uma gama destes fatores, os tempos simulados para se formar um talik sub-lacustre em 90 m de permafrost variam de ∼200 a >1,000 anos (velocidade de descongelação vertical <0.1–0.5 m ano−1). As oscilações de temperatura sazonal ao longo da margem do lago afetam o escoamento acima do permafrost e os processos criológicos tardios. Um clima mais quente acelera a fusão completa do permafrost e acelera o escoamento sazonal dentro da camada superior do permafrost. Antes da formação do talik aberto à superfície, a fusão do permafrost sub-lacustre é controlada por condução de calor. As taxas de fusão aumentam acentuadamente quando as condições hidráulicas induzem fluxo ascendente ou descendente entre o lago e o aquífero inferior ao permafrost. A complexidade da inter-relação entre o gelo do solo e o fluxo de água, em conjunto com o previsto aquecimento no ártico, sublinha a utilidade dos modelos acoplados de transporte de água subterrânea e de energia na avaliação de sistemas hidráulicos impactados por permafrost.

Notes

Acknowledgements

We gratefully acknowledge support from the USGS National Research Program, the USGS Climate and Land Use Change and Water Mission Areas, and SERDP grant RC-2111. We thank Jeffrey McKenzie, McGill University, and two anonymous reviewers for their helpful comments on the manuscript. We also wish to thank the Guest Editors (Larry Hinzman, Georgia Destouni, and Ming-Ko Woo) for their time and effort in developing this special theme issue on cold regions hydrogeology.

References

  1. Anderson L, Abbott MB, Finney BP (2001) Holocene climate inferred from oxygen isotope ratios in lake sediments, Central Brooks Range, Alaska. Quat Res 55:313–321CrossRefGoogle Scholar
  2. Anderson L, Finney BP, Shapley MP (2011) Lake carbonate-δ18O records from the Yukon Territory, Canada: Little Ice Age moisture variability and patterns. Quat Sci Rev 30:887–898CrossRefGoogle Scholar
  3. Arctic Climate Impact Assessment (ACIA) (2005) Impacts of a warming climate. Cambridge Univ Press, Cambridge, 144 ppGoogle Scholar
  4. Burn CR (2002) Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada. Can J Earth Sci 39:1281–1298CrossRefGoogle Scholar
  5. Burn CR (2005) Lake-bottom thermal regimes, western Arctic coast, Canada. Permafr Periglac Process 16:355–367CrossRefGoogle Scholar
  6. Chapman WL, Walsh JE (1993) Recent variations of sea ice and air temperatures in high latitudes. Bull Am Meteorol Soc 74:33–47CrossRefGoogle Scholar
  7. Chapman WL, Walsh JE (2007) Simulations of Arctic temperature and pressure by global coupled models. J Clim 20:609–632CrossRefGoogle Scholar
  8. Clark A, Barker CE, Weeks EP (2009) Drilling and testing the DOI-04-1A Coalbed Methane Well, Fort Yukon Alaska. US Geol Surv Open-File Rep 2009-1064Google Scholar
  9. Clegg B, Hu S (2010) An oxygen-isotope record of Holocene climate change in the south-central Brooks Range, Alaska. Quat Sci Rev 29:928–939CrossRefGoogle Scholar
  10. Ge S, McKenzie J, Voss C, Wu Q (2011) Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophys Res Lett L14402 doi: 10.1029/2011GL047911
  11. Hinzman L et al (2005) Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim Chang 72:251–298. doi: 10:1007/s10584-005-5352-2 CrossRefGoogle Scholar
  12. Jepsen SM, Voss CI, Walvoord MA, Rose JR, Minsley BJ, Smith BD (2012) Sensitivity analysis of lake mass balance in discontinuous permafrost: example from disappearing Twelvemile Lake, Yukon Flats, Interior Alaska. Hydrogeol J. doi: 10.1007/s10040-012-0896-5
  13. Jorgenson MT, Yoshikawa K, Kanevskiy M, Shur Y, Romanovsky V, Marchenko S, Gross G, Brown J, Jones B (2008) Permafrost characteristics of Alaska (map). Institute of Northern Engineering, Univ. Alaska, Fairbanks, AKGoogle Scholar
  14. Jorgenson MT et al (2010) Resilience and vulnerability of permafrost to climate change. Can J For Res 40:1219–1236CrossRefGoogle Scholar
  15. Jorgenson MT, Kanevskiy M, Shur Y, Osterkamp T, Fortier D, Cater T, Miller P (2012) Thermokarst lake and shore fen development in Boreal Alaska. In: Hinkel K (ed) Proceedings of the Tenth International Conference on Permafrost, Salekhard, Russia. The Northern Publisher, Tyumen, Russia, pp 179–184Google Scholar
  16. Kleinberg RL, Griffin DD (2005) NMR measurements of permafrost: unfrozen water assay, pore-scale distribution of ice, and hydraulic permeability of sediments. Cold Reg Sci Technol 42(1):63–77CrossRefGoogle Scholar
  17. Labrecque SD, Lacelle D, Duguay CR, Lauriol B, Hawkings J (2009) Contemporary (1951–2001) evolution of lakes in the Old Crowbasin, northern Yukon, Canada: remote sensing, numerical modeling, and stable isotope analysis. Arctic 62(2):225–238Google Scholar
  18. Ling F, Zhang T (2003) Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain. J Geophys Res 108(D16):4511. doi: 10.1029/2002JD003014 CrossRefGoogle Scholar
  19. Magnuson J et al (2000) Historical trends in lake and river ice cover in the northern hemisphere. Science 289:1743–1746CrossRefGoogle Scholar
  20. McGuire AD, Chapin FS, Walsh JE, Wirth C (2006) Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. Annu Rev Environ Resour 31:61–91CrossRefGoogle Scholar
  21. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–555CrossRefGoogle Scholar
  22. McKenzie JM, Voss CI (2012) Permafrost thaw in a nested groundwater-flow system. Hydrogeol J. doi: 10040_10.1007/s10040-012-0942-3
  23. McKenzie JM, Voss CI, Siegel DI (2007) Groundwater flow with energy transport and water-ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv Water Resour 30(4):966–983CrossRefGoogle Scholar
  24. Michel F, van Everdingen RO (1994) Changes in hydrogeologic regimes in permafrost regions due to climatic change. Permafr Periglac Process 5:191–195CrossRefGoogle Scholar
  25. Minsley B et al (2012) Airborne electromagnetic imaging of discontinuous permafrost. Geophys Res Lett 39:L02503. doi: 10.1029/2011GL050079 CrossRefGoogle Scholar
  26. Painter SL (2011) Three–phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications. Comput Geosci 15:69–85. doi: 10.1007/s10596-010-9197-z CrossRefGoogle Scholar
  27. Plug LJ, West JJ (2009) Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J Geophys Res 114:F01002. doi: 10.1029/2006JF000740 CrossRefGoogle Scholar
  28. Riordan B, Verbyla D, McGuire AD (2006) Shrinking ponds in subarctic Alaska base on 1950–2002 remotely sensed images. J Geophys Res 111:G04002CrossRefGoogle Scholar
  29. Roach J, Griffith B, Verbyla D, Jones JJ (2011) Mechanisms influencing changes in lake area in Alaskan boreal forest. Glob Chang Biol 17(8):2567–2583CrossRefGoogle Scholar
  30. Rover J, Ji L, Wylie BK, Tieszen LL (2012) Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data. Remote Sens Lett 3(7):595–604CrossRefGoogle Scholar
  31. Rowland JC, Travis BJ, Wilson CJ (2011) The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys Res Lett 38:L17504. doi: 10.1029/2011GL048497 CrossRefGoogle Scholar
  32. Scenarios Network for Alaska and Arctic Planning (SNAP) (2012) University of Alaska. www.snap.uaf.edu. Accessed 17 May 2012
  33. Serreze MC et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Chang 46:159–207CrossRefGoogle Scholar
  34. Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing arctic lakes. Science 208:1429CrossRefGoogle Scholar
  35. US Army (1962) Ground Temperature Observations, Fort Yukon, Alaska. Technical report 100, US Army Colder Regions Research and Engineering Laboratory, Hanover, NHGoogle Scholar
  36. Voss CI, Provost AM (2002) SUTRA: a model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geol Surv Water Resour Invest Rep 02-4231Google Scholar
  37. Walsh JE, Chapman WL, Romanovsky V, Christensen JH, Stendel M (2008) Global climate model performance over Alaska and Greenland. J Clim 21(23):6156–6174CrossRefGoogle Scholar
  38. Walvoord MA, Voss CI, Wellman TP (2012) Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: example from Yukon Flats Basin, Alaska, USA. Water Resour Res 48:W07524. doi: 10.1029/2011WR011595 CrossRefGoogle Scholar
  39. West JJ, Plug LJ (2008) Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J Geophys Res 113:F01009. doi: 10.1029/2006JF000696 CrossRefGoogle Scholar
  40. Williams JR (1962) Geologic reconnaissance of the Yukon Flats District Alaska. US Geol Surv Bull 1111-H:289–331Google Scholar
  41. Wright N, Quinton WL, Hayashi M (2008) Hillslope runoff from an ice-cored peat plateau in a discontinuous permafrost basin, Northwest Territories, Canada. Hydrol Process 22:2816–2828. doi: 10.1002/hyp.7005 CrossRefGoogle Scholar
  42. Yoshikawa K, Hinzman L (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost. Permafr Periglac Process 14(2):151–160CrossRefGoogle Scholar
  43. Zimov SA, Schuur EAG, Chapin FS III (2006) Permafrost and the global carbon budget. Science 312:1612–1613CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • Tristan P. Wellman
    • 1
  • Clifford I. Voss
    • 2
    Email author
  • Michelle A. Walvoord
    • 3
  1. 1.Colorado Water Science CenterUS Geological Survey, Denver Federal CenterLakewoodUSA
  2. 2.National Research ProgramUS Geological SurveyMenlo ParkUSA
  3. 3.National Research ProgramUS Geological Survey, Denver Federal CenterLakewoodUSA

Personalised recommendations