Hydrogeology Journal

, Volume 21, Issue 1, pp 25–39 | Cite as

Review: Groundwater in Alaska (USA)

  • J. B. Callegary
  • C. P. Kikuchi
  • J. C. Koch
  • M. R. Lilly
  • S. A. Leake
Paper

Abstract

Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.

Keywords

Alaska (USA) Groundwater/surface-water interactions Permafrost Cold regions Climate change 

Panorama: L’eau souterraine en Alaska (USA)

Résumé

L’eau souterraine dans l’état américain d’Alaska est essentielle à la fois pour les humains et pour les écosystèmes. Les interactions entre physiographie, écologie, géologie, climat passé et actuel, ont largement déterminé la localisation et les caractéristiques des aquifères comme d’ailleurs le rythme et l’amplitude des flux entrants, sortants et internes au système aquifère. Le climat s’échelonne du maritime dans la partie Sud au continental dans l’intérieur à l’arctique sur le Versant Nord. Durant l’ère quaternaire, topographie et nature des roches se sont combinées avec les mécanismes glaciaires et péri-glaciaires pour former les aquifères alluviaux non consolidés d’Alaska, d’où ont résulté des hydrofaciès extrêmement hétérogènes. De plus, la longue persistance d’un sol gelé, soit saisonnier soit permanent, affecte grandement la distribution de la recharge et de la décharge des aquifères. En raison d’une forte utilisation de l’eau de surface et de l ‘eau souterraine, et d’une perméabilité de la nappe hautement variable, contrôlée en partie par le permafrost et par le gel saisonnier, comprendre les interactions eau souterraine-eau de surface ainsi que les effets du changement climatique est crucial pour l’appréhension de la disponibilité en eau souterraine et du transfert des polluants naturels et anthropiques.

Revisión: El agua subterránea en Alaska (EEUU)

Resumen

El agua subterránea en el estado de Alaska es crítica para los seres humanos y los ecosistemas. Las interacciones entre la fisiografía, ecología, geología y el clima actual y pasado han determinado en gran parte la ubicación y las propiedades de los flujos, así como el tiempo y magnitud de flujos hacia, desde y dentro del sistema de agua subterránea. El clima varía desde marítimo en la porción sur del estado a continental en el interior, y ártico en la ladera norte. Durante el período Cuaternario, la topografía y el tipo de roca se ha combinado con procesos glaciales y periglaciales para desarrollar los acuíferos aluviales no consolidados de Alaska y ha resultado en hidrofacies altamente heterogéneas. Además, la gran persistencia del terreno congelado, ya sea estacional o permanente, afecta en gran medida la distribución de la recarga y descarga del acuífero. Debido al alto escurrimiento y el uso del agua subterránea, y la permeabilidad altamente variable controlada en parte por el permafrost y estacionalmente por el terreno congelado, la comprensión de la interacción superficial – agua subterránea y los efectos del cambio climático es critico para el conocimiento de la disponibilidad de agua subterránea y los movimientos de contaminantes naturales y antropogénicos.

综述: 美国阿拉斯加的地下水

摘要

美国阿拉斯加州的地下水资源对于人类和生态系统都是至关重要的。自然地理条件、生态环境、地质条件和古往今来的气候条件之间的相互作用在很大程度上决定了含水层的位置和特性, 以及流入、流出和存在于地下水系统中的水流的流动时间和规模。州内的气候条件变化很大, 由南向北, 南部为海洋性气候, 中部为大陆性气候, 阿拉斯加北坡为北极气候。在第四纪期间, 地形和岩石的类型与冰期、间冰期过程相结合, 形成了阿拉斯加松散的冲积含水层, 导致了水相的高度非均质化。除此之外, 长期呈冷冻状态的土壤, 无论是季节性的还是永久性的, 都极大地影响了含水层源汇区的分布。由于径流量、地下水使用量很大, 且部分受永久性、季节性冻土控制的渗透性是高度变化的, 弄清地下水-地表水的相互作用和气候变化对其的影响, 对于了解地下水的可用性和自然、人为污染物的运移是非常重要的。

Revisão:Águas subterrâneas no Alasca (EUA)

Resumo

A água subterrânea no estado norte-americano do Alasca é fundamental para os seres humanos e para os ecossistemas. Interações entre a fisiografia, a ecologia, a geologia e o clima atual e passado determinaram largamente a localização e as propriedades dos aquíferos bem como a temporização e a magnitude dos fluxos de, para e dentro do sistema de águas subterrâneas. O clima varia de marítimo na parcela sul do estado a continental no interior, e a ártico na Encosta Norte. Durante o período Quaternário, a topografia e o tipo de rochas combinaram-se com os processos glaciar e periglacial para desenvolver os aquíferos aluvionares não consolidados do Alasca, resultando em hidrofácies altamente heterogéneas. Além disso, o congelamento persistente do solo, seja sazonal ou permanente, afeta extremamente a distribuição da recarga e da descarga dos aquíferos. Devido ao elevado escoamento superficial e do uso da água subterrânea, e da variabilidade elevada da permeabilidade, controlada em parte pelo permafrost e pelo solo sazonalmente congelado, a compreensão das interações água subterrânea/água superficial e dos efeitos das mudanças climáticas é crítica para o conhecimento da disponibilidade de água subterrânea e do movimento de contaminantes naturais e antropogénicos.

References

  1. Abramov A, Gruber S, Gilichinsky D (2008) Mountain permafrost on active volcanoes: field data and statistical mapping, Klyuchevskaya Volcano Group, Kamchatka, Russia. Permafr Periglac Process 19:261–277CrossRefGoogle Scholar
  2. Alaska Department of Commerce, Community, and Economic Development (2012) Alaska Community Database community information summary: Noatak. Webpage http://www.commerce.state.ak.us/dca/commdb/CIS.cfm?Comm_Boro_Name=Noatak. Accessed 1 May, 2012
  3. Alaska Department of Environmental Conservation (2007) Alaska’s legacy of oil and hazardous substance pollution: cleanup and management of Alaska’s contaminated sites. Report. http://library.state.ak.us/asp/edocs/2007/06/ocn145509536.pdf. Accessed 1 November 2012
  4. Alaska Department of Environmental Conservation (2008) Groundwater in Alaska. Factsheet. http://dec.alaska.gov/eh/docs/dw/DWP/Groundwater%20fact%20sheet%202008.pdf. Accessed 1 May 2012
  5. Alaska Department of Environmental Conservation (2009) Red Devil Mine, Red Devil, Alaska. Alaska Department of Environmental Conservation, Spill Prevention and Response Division, Contaminated Sites Program. http://dec.alaska.gov/spar/csp/docs/western/red-devil.pdf. Accessed 1 May 2012
  6. Alaska Department of Natural Resources (2012a) Donlin Creek project. http://dnr.alaska.gov/mlw/mining/largemine/pebble/. Accessed 10 August 2012
  7. Alaska Department of Natural Resources (2012b) Nixon Fork project. http://dnr.alaska.gov/mlw/mining/largemine/nixonfork/. Accessed 10 August 2012
  8. Alaska Department of Natural Resources (2012c) Pebble project. http://dnr.alaska.gov/mlw/mining/largemine/pebble/. Accessed 10 August 2012
  9. Aley T, Aley C, Elliott WR, Huntoon PW (1993) Karst and cave resource significance assessment: Ketchikan Area, Tongass National Forest, Alaska. Report on file with US DA, Forest Service, Washington, DCGoogle Scholar
  10. Aller L, Bennett T, Lehr JH, Pretty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. EPA-600/2-87-035, US EPA, Washington, DCGoogle Scholar
  11. Allred K (2004) Some carbonate erosion rates of Southeast Alaska. J Cave Karst Studies 66:89–97Google Scholar
  12. Anderson MP (1989) Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments. Geol Soc Am Bull 101:501–511CrossRefGoogle Scholar
  13. Arnold TL, Warner KL, Groschen GE, Caldwell JP, and Kalkhoff SJ (2008) Hydrochemical regions of the glacial aquifer system, northern United States, and their environmental and water-quality characteristics. US Geol Surv Sci Invest Rep 2008–5015Google Scholar
  14. Arp CD, Jones BM (2009) Geography of Alaska lake districts: Identification, description, and analysis of lake-rich regions of a diverse and dynamic state. US Geol Surv Water Resour Invest Rep 2008–5215Google Scholar
  15. Barrett K, McGuire AD, Hoy EE, Kasischke ES (2011) Potential shifts in dominant forest cover in Interior Alaska driven by variations in fire severity. Ecol Appl 21:2380–2396CrossRefGoogle Scholar
  16. Begét JE, Hopkins DM, Charron SD (1996) The largest known maars on Earth, Seward Peninsula, Northwest Alaska. Arctic 49:62–69Google Scholar
  17. Bellino JC (2009) Effects of geomorphic setting on shallow-groundwater exchange and water temperature of salmon-bearing headwater streams of the Lower Kenai Peninsula, Alaska. MSc Thesis, University of South Florida, USAGoogle Scholar
  18. Bowden WB, Gooseff MN, Balser A, Green A, Peterson BJ, Bradford J (2008) Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystems. J Geophys Res G Biogeosci doi:10.1029/2007JG000470
  19. Brabets TP, Nelson GL, Dorova JM, Milner AM (1999) Water-quality assessment of the Cook Inlet Basin, Alaska: environmental setting. US Geol Surv Water Resour Invest Rep 99-4025Google Scholar
  20. Brodsky EE, Roeloffs E, Woodcock D, Gall I, Manga M (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J Geophys Res. doi:10.1029/2002JB002321
  21. Brosten TR, Bradford JH, McNamara JP, Zarnetske JP, Gooseff MN, Bowden WB (2006) Profiles of temporal thaw depths beneath two arctic stream types using ground-penetrating radar. Permafr Periglac Process 17:341–355CrossRefGoogle Scholar
  22. Brown J, Everett KR, Webber PJ, Maclean SF, Murray DF (1980) The coastal tundra at Barrow. In: Brown J, Miller PC, Tieszen LL, and Bunnell FL (eds) An arctic ecosystem: the coastal tundra at Barrow, Alaska. US/IBP synthesis series 12, Dowden, Hutchinson, and Ross, Stroudsburg, PAGoogle Scholar
  23. Bureau of Land Management (2012) Red Devil Mine. http://www.blm.gov/ak/st/en/fo/ado/hazardous_materials/red_devil_mine.html. Accessed May 2012
  24. Carey SK, Woo MK (2000) The role of soil pipes as a slope runoff mechanism, Subarctic Yukon, Canada. J Hydrol 253:110–129CrossRefGoogle Scholar
  25. Carey SK, Woo MK (2002) Hydrogeomorphic relations among soil pipes, flow pathways, and soil detachments within a permafrost hillslope. Phys Geogr 23:95–114CrossRefGoogle Scholar
  26. Carls MG, Thomas RE, Lilly MR, Rice SD (2003) Mechanism for transport of oil-contaminated groundwater into pink salmon redds. Mar Ecol Prog Ser 248:245–255CrossRefGoogle Scholar
  27. Cederstrom DJ, Trainer FW, Waller RM (1964) Geology and ground-water resources of the Anchorage area, Alaska. US Geol Surv Water Suppl Pap 1773Google Scholar
  28. Chapman WL, Walsh JE (2007) Simulations of arctic temperature and pressure by global coupled models. J Clim 20:609–632CrossRefGoogle Scholar
  29. Clarus Technologies (2006) Alternate Cleanup Level Demonstration project, Noorvik Federal Scout Armory, Alaska Army National Guard Noorvik, Alaska. http://notes4.state.ak.us/pn/pubnotic.nsf/0/647f7b74e2a9177289257245005e537a/$FILE/FMO+Noorvik+Alternate+Clean.pdf. Accessed May 2012
  30. Clilverd HM, White DM, Tidwell AC, Rawlins MA (2011) The sensitivity of northern groundwater recharge to climate change: a case study in Northwest Alaska. J Am Water Resour As 47:1228–1240CrossRefGoogle Scholar
  31. Curran JH, McTeague ML, Burril SE, Zimmerman CE (2011) Distribution, persistence, and hydrologic characteristics of salmon spawning habitats in clearwater side channels of the Matanuska River, Southcentral Alaska. US Geol Surv Sci Invest Rep 2011-5102Google Scholar
  32. Dean KG (1984) Stream-icing zones in Alaska. Report of Invest., Dept. Natural Resour, Div. Geol. Geophys. Surv., Juneau, ASK, pp 84–16Google Scholar
  33. Deming D (1993) Regional permeability estimates from investigations of coupled heat and groundwater flow, North Slope of Alaska. J Geophys Res 98:16,271–16,286CrossRefGoogle Scholar
  34. Dorava JM, Brekken JM (1995) Overview of environmental and hydrogeologic conditions at Kotzebue, Alaska. US Geol Surv Open-File Rep 95-349Google Scholar
  35. Durnford D, Dastoor A, Figueras-Nieto D, Ryjkov A (2010) Long range transport of mercury to the Arctic and across Canada. Atmos Chem Phys 10:6063–6086CrossRefGoogle Scholar
  36. Frey EF, McClelland JW (2009) Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Proc 23:169–182CrossRefGoogle Scholar
  37. Gatto LW (1995) Soil freeze-thaw effects on bank erodibility and stability. Special Report, US Army Corps of Eng. Cold Regions Res. and Eng. Lab., Hanover, NH, pp 95–24Google Scholar
  38. Glass RL, Frenzel SA (2001) Distribution of arsenic in water and streambed sediments, Cook Inlet basin, Alaska. US Geolo Surv Fact Sheet 083-01Google Scholar
  39. Government Accounting Office (2009) Alaska native villages: limited progress has been made on relocating villages threatened by flooding and erosion. GAO-09-551, GAO, Juneau, AK, 53 ppGoogle Scholar
  40. Gracz MB (2011) Cook Inlet lowlands wetland mapping. http://www.cookinletwetlands.info/. Accessed 12 April 2012
  41. Gray JE, Gent CA, Snee LW (2000) The Southwestern Alaska Mercury Belt and its relationship to the circum-Pacific Metallogenic Mercury Province. Polarforschung 68:187–196Google Scholar
  42. Grosse G, Romanovsky V, Jorgenson T, Anthony KW, Brown J, Overduin PP (2011) Vulnerability and feedbacks of permafrost to climate change. EOS Trans Am Geophys Union 92:73–74CrossRefGoogle Scholar
  43. Hanor JS, Nunn JA, Lee Y (2004) Salinity structure of the central North Slope foreland basin, Alaska, USA: implications for pathways of past and present topographically driven regional fluid flow. Geofluids 4:152–168CrossRefGoogle Scholar
  44. Hendrickson M, Casey K (2007) Geologic and hydrologic investigations of El Capitan Peak Alpine Karst, Prince of Wales Island, Southeast Alaska. Available via 2007 National Speleological Society Convention Abstracts. http://www.caves.org/pub/journal/PDF/v69/cave-69-03-360.pdf. Accessed 7 June 2012
  45. Hinzman LD, Bettez ND, Bolton WR, Chapin FS III, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Nolan M, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Change 72:251–298CrossRefGoogle Scholar
  46. Hussey KM, Michelson RW (1966) Tundra relief features near Point Barrow, Alaska. Arctic 19:162–184Google Scholar
  47. IPCC (2007) Climate change 2007, in the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, CambridgeGoogle Scholar
  48. Jaeglé L (2010) Amospheric long-range transport and deposition of mercury to Alaska. A report to the Alaska Department of Environmental Conservation. http://www.atmos.washington.edu/~jaegle/group/Publications_files/Alaska_Mercury_report_revised.pdf. Accessed 6 June, 2012.
  49. Jepsen SM, Voss CI, Walvoord MA, Rose JR, Minsley BJ, Smith BD (2012) Sensitivity analysis of lake mass balance in discontinuous permafrost: the example of disappearing Twelvemile Lake, Yukon Flats, Alaska (USA). Hydrogeol J. doi:10.1007/s10040-012-0896-5
  50. Jokela JB, Munter JA, Evans JG (1991) Ground-water resources of the Palmer-Big Lake area, Alaska: a conceptual model. Report of Investigations 90-4, Alaska Department of Natural Resources Division of Geological and Geophysical Surveys, Juneau, AKGoogle Scholar
  51. Jones BM, Grosse G, Arp CD, Jones MC, Walter Anthony KM, Romanovsky VE (2011) Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula. Alaska J Geophys Res. doi:10.1029/2011JG001666
  52. Jones BM, Grosse G, Hinkel KM, Arp CD, Walker S, Beck RA, Galloway JP (2012) Assessment of pingo distribution and morphometry using an IfSAR derived digital surface model, western Arctic Coastal Plain, northern Alaska. Geomorph 138:1–14CrossRefGoogle Scholar
  53. Jones JAA (2010) Soil piping and catchment response. Hydro Proc 24:1548–1566CrossRefGoogle Scholar
  54. Jones JB, Rinehart AJ (2010) The long-term response of stream flow to climatic warming in headwater streams of Interior Alaska. Can J Forest Res 40(7):1210–1218CrossRefGoogle Scholar
  55. Jorgenson MT, Shur Y (2007) Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J Geophys Res F Earth Surf. doi:10.1029/2006JF000531
  56. Jorgenson MT, Yoshikawa K, Romanovsky V, Brown J, Kanevskiy M, Shur Y, Marchenko S, Grosse G, Jones B (2008) Map of permafrost characteristics in Alaska. Ninth International Conference on Permafrost, Fairbanks, AK, June 29, 2008Google Scholar
  57. Jorgenson MT, Romanovsky V, Harden J, Shur Y, O'Donnell J, Schuur EAG, Kanevskiy M (2010) Resilience and vulnerability of permafrost to climate change. Can J Forest Res. doi:10.1139/X10-060
  58. Kammerer JC (1990) Largest rivers in the United States (water fact sheet). US Geol Surv Open File Rep 87-242Google Scholar
  59. Kanevskiy M, Shur Y, Fortier D, Jorgenson MT, Stephani E (2011) Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quat Res 75:584–596CrossRefGoogle Scholar
  60. Karlstrom TNV (1964) Surficial geology of Alaska. US Geol Surv Miscell Geol Invest Map 357Google Scholar
  61. Kessler MA, Plug LJ, Walter Anthony KM (2012) Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J Geophys Res. doi:10.1029/2011JG001796
  62. Kikuchi CP, Ferré TPA, Welker JM (2012) Spatially telescoping measurements for improved characterization of groundwater: surface water interactions. J Hydrol. doi:10.1016/j.jhydrol.2012.04.002
  63. Koch JC, Striegl R, Runkel R, Ewing SA, McKnight DM (2010) Seasonality in water, carbon, and nitrogen fluxes from an upland boreal catchment underlain by continuous permafrost. American Geophysical Union Fall Meeting, San Francisco, CA., 13–17 DecGoogle Scholar
  64. Koch JC, Ewing SA, Striegl RG, McKnight DM (2013) Rapid runoff via shallow throughflow and deeper preferential flow in a boreal catchment underlain by frozen silt (Alaska, USA). Hydrogeol J. doi:10.1007/s10040-012-0934-3
  65. Kraemer T, Brabets T (2012) Uranium isotopes (234U/238U) in rivers of the Yukon Basin (Alaska and Canada) as an aid in identifying water sources, with implications for monitoring hydrologic change in arctic regions. Hydrogeol J 20:469–481CrossRefGoogle Scholar
  66. Larsen CF, Motyka RJ, Freymueller JT, Echelmeyer KA, Ivins ER (2005) Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth Planet Sc Lett 237:548–560CrossRefGoogle Scholar
  67. Lemieux J-M, Sudicky EA (2010) Simulation of groundwater age evolution during the Wisconsinian glaciation over the Canadian landscape. Environ Fluid Mech 10:91–102CrossRefGoogle Scholar
  68. Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008) Simulating the impact of glaciations on continental groundwater flow systems: 1. relevant processes and model formulation. J Geophys. Res 113:F03017. doi:10.1029/2007JF000928.
  69. Liljedahl AK, Hinzman LD, Harazono Y, Zona D, Tweedie CE, Hollister RD, Engstrom R, Oechel WC (2011) Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 8:3375–3389CrossRefGoogle Scholar
  70. Liljedahl AK, Hinzman LD, Schulla J (2012) Ice-wedge polygon type controls low-gradient watershed-scale hydrology. Proc. Tenth Int. Conf. Permafrost, Salekhard, Russia, June 25–29, 2012. http://ticop2012.org/upload/iblock/83b/83b336f940efdec30802d3610debb4f1.pdf. Accessed 1 November 2012
  71. Ling F, Zhang T (2003) Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain. J Geophys Res G Atmos 108:ACL 8-1–ACL 8-11Google Scholar
  72. Macintosh JC, Schlegel ME, Person M (2012) Glacial impacts on hydrologic processes in sedimentary basins: evidence from natural tracer studies. Geofluids 12:7–21CrossRefGoogle Scholar
  73. Maclean SH (2003) Influences of hydrological processes on the spatial and temporal variation in spawning habitat quality for two chum salmon stocks in interior Alaska. MSc Thesis, University of Alaska, USAGoogle Scholar
  74. Maclean R, Oswood MW, Irons JG, McDowell WH (1999) The effect of permafrost on stream biogeochemistry: a case study of two streams in the Alaskan (U.S.A.) taiga. Biogeochemistry 47:239–267CrossRefGoogle Scholar
  75. Malenchak J, Doering J, Shen HT (2011) Modeling of anchor ice and aufeis formation at Sundance Rapids. CGU HS Committee on River Ice Processes and the Environment, 16th Workshop on River Ice, Winnipeg, MB, September 18–22, 2011Google Scholar
  76. Minsley BJ, Abraham JD, Smith BD, Cannia JC, Voss CI, Jorgenson MT, Walvoord MA, Wylie BK, Anderson L, Ball LB, Deszcz-Pan M, Wellman TP, Ager TA (2012) Airborne electromagnetic imaging of discontinuous permafrost. Geophys Res Lett 39:L02503. doi:10.1029/2011GL050079 CrossRefGoogle Scholar
  77. Moran EH, Solin GL (2006) Preliminary water-table map and water-quality data for part of the Matanuska-Susitna Valley, Alaska, 2005. US Geol Surv Open-File Rep 2006-1209Google Scholar
  78. Mueller S, Goldfarb R, Verplanck P (2001) Surface and Ground Water Geochemistry Near the Donlin Creek Gold Deposit, Southwestern Alaska. US Geol Surv Fact Sheet 111-01Google Scholar
  79. Muhs DR, Ager TA, Bettis EA III, McGeehin J, Been JM, Begét JE, Pavich MJ, Stafford TW Jr, Stevens DASP (2003) Stratigraphy and palaeoclimatic significance of Late Quaternary loess-palaeosol sequences of the Last Interglacial-Glacial cycle in central Alaska. Quat Sci Rev 22:1947–1986CrossRefGoogle Scholar
  80. Munter JA, Maynard DL (1987) Extent of ground-water contamination in Alaska. AK Div Geol Geophys Surv Rep Invest 87-16, Alaska Div. Geol. Geophys. Survey, Juneau, AKGoogle Scholar
  81. Munter JA, Maurer MA, Inghram MG, Petrik WA (1991) Preliminary hydrogeological evaluation of Moonlight Springs, Nome, Alaska. AK Div Geol Geophys Surv Public Data File 91-28, Alaska Div. Geol. Geophys. Survey, Juneau, AKGoogle Scholar
  82. Muskett RR, Romanovsky VE (2011) Alaskan permafrost groundwater storage changes derived from GRACE and ground measurements. Remote Sens 3:378–397CrossRefGoogle Scholar
  83. Neal EG (2009) Channel incision and water-decline along a recently formed proglacial stream, Mendenhall Valley, southeastern Alaska. In: Haeussler PJ, Galloway JP (eds) Studies by the US Geological Survey in Alaska, 2007. US Geol Surv Prof Pap 1760-EGoogle Scholar
  84. Nelson GL, Johnson PR (1981) Ground-water reconnaissance of part of the lower Kenai Peninsula, Alaska. US Geol Surv Open-File Rep 81-905Google Scholar
  85. Nelson FE, Shiklomanov NI, Mueller GR, Hinkel KM, Walker DA, Bockheim JG (1997) Estimating active-layer thickness over a large region: Kuparuk River Basin, Alaska. USA Arctic Alpine Res 29:367–378CrossRefGoogle Scholar
  86. Nelson FE, Anasimov OA, Shiklomanov NI (2002) Climate change and hazard zonation in the circum-arctic permafrost regions. Nat Hazard 26:203–225CrossRefGoogle Scholar
  87. Neuzil CE (2012) Hydromechanical effects of continental glaciation on groundwater systems. Geofluids 12:22–37CrossRefGoogle Scholar
  88. Nolan BT, Hitt KJ, Ruddy BC (2002) Probability of nitrate contamination of recently recharged ground waters in the conterminous United States. 36:2138–2145Google Scholar
  89. Nunn JA, Hanor JS, Lee Y (2005) Migration pathways in the Central North Slope foreland basin, Alaska USA: solute and thermal constraints on fluid flow simulations. Basin Res 17:403–416CrossRefGoogle Scholar
  90. O’Keefe C, Edwards RT (2002) Evidence for hyporheic transfer and removal of marine-derived nutrients in a sockeye stream in Southwest Alaska. Am Fish Soc Symp 33:99–107Google Scholar
  91. Oasis Environmental (2010) Investigation of seeps and hydrologic exchange between surface waters and the hyporheic zone for selected sections of streams 2002 and 2004: DRAFT REV. 5. Report prepared for PacRim Coal–Chuitna Coal project. http://dnr.alaska.gov/mlw/mining/largemine/chuitna/pdf/02-IvestigationofSeepsandHydrologicExchangeBetweenSurfac.pdf. Accessed May 2012
  92. Osterkamp TE, Payne MW (1981) Estimates of permafrost thickness from well logs in northern Alaska. Cold Reg Sci Technol 5:13–27CrossRefGoogle Scholar
  93. Osterkamp TE, Jorgenson MT, Schuur EAG, Shur YL, Kanevskiy MZ, Vogel JB, Tumskoy VE (2009) Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska. Permafr Periglac Process 20:235–256CrossRefGoogle Scholar
  94. Patrick LD, Brabets TP, Glass RL (1989) Simulation of ground-water flow at Anchorage, Alaska, 1955-83. US Geol Surv Sci Invest Rep 88-4139Google Scholar
  95. Petrone KC, Jones JB, Hinzman LD, Boone RD (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res Biogeosci. doi:10.1029/2005JG000055
  96. Péwé TL (1975) Quaternary stratigraphic nomenclature in unglaciated central Alaska. US Geol Surv Prof Pap 862Google Scholar
  97. Piotrowski JA (2007) Groundwater under ice sheets and glaciers. In: Knight PG (ed) Glacier science and environmental change. Blackwell, Malden, MAGoogle Scholar
  98. Plafker G, Berg HC (1994) An overview of the geology and tectonic evolution of Alaska. In: Plafker G, Berg HC (eds) The geology of Alaska. In: The geology of North America, vol G1, Geol Soc. Am., Boulder, CO, pp 989–1021Google Scholar
  99. PRISM Climate Group (2012) Alaska: mean annual precipitation, 1971–2000, in millimeters. Oregon State University, Corvallis, OR. http://www.prism.oregonstate.edu/. Accessed April 2012
  100. Ray SR, Vohden J (1992) Preliminary water-quality sampling for the Fairbanks International Airport bioremediation project: November 1990 through October 1991. Public data file 92-1, Alaska Division of Water, Juneau, AKGoogle Scholar
  101. Reeve AS, Gracz M (2008) Simulating the hydrogeologic setting of peatlands in the Kenai Peninsula lowlands, Alaska. Wetlands 28:92–106CrossRefGoogle Scholar
  102. Rickman RL (1993) Hydrologic conditions and low-flow investigations of the Lower Bradley River Near Homer, Alaska, October 1991 to February 1992. US Geol Surv Open-File Rep 93-95Google Scholar
  103. Ritter DF, Kochel RC, Miller JR (1995) Process geomorphology. Brown, Dubuque, IWGoogle Scholar
  104. Ritzi RW, Dale F, Jaynea DF, Zahradnik AJ, Field AA, Fogg GE (1994) Geostatistical modeling of heterogeneity in glaciofluvial, buried-valley aquifers. Ground Water 32:666–674CrossRefGoogle Scholar
  105. Roach J, Griffith B, Verbyla D, Jones J (2011) Mechanisms influencing changes in lake area in Alaskan boreal forest. Glob Chang Biol 17:2567–2583CrossRefGoogle Scholar
  106. Rojstaczer SA, Wolf S (1994) Hydrologic changes associated with the earthquake in The San Lorenzo and Pescadero drainage basins. In: The Loma Prieta (California) earthquake of October 17, 1989: hydrologic disturbances. US Geol Surv Prof Pap 1551-E, pp 51–64Google Scholar
  107. Schaefer J, Nye C (2008) Monitoring the active volcanoes of Alaska. Newsletter 2008-1, Alaska Div. Geol. Geophys. Survey, Juneau, AKGoogle Scholar
  108. Schmoll HR, Yehle LA, Gardner CA, Odum JK (1984) Guide to surficial geology and glacial stratigraphy in the Upper Cook Inlet Basin. Alaska Geol. Soc., Anchorage, AKGoogle Scholar
  109. Schneider D, Delgado-Granados H, Huggel C, Kääb A (2008) Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (central Mexico). Nat Hazards Earth Syst Sci 8:559–571CrossRefGoogle Scholar
  110. Schohl GA, Ettema R (1986) Theory and laboratory observations of naled ice growth. J Glaciol 32:168–177Google Scholar
  111. Schohl GA, Ettema R (1990) Two-dimensional spreading and thickening of aufeis. J Glaciol 36:169–178Google Scholar
  112. Schuster PF, Krabbenhoft DP, DeWild JF, Sabin TG (2008) A paleoenvironmental record of atmospheric mercury deposition in a permafrost core from northern Alaska. EOS Trans Am Geophys Union 89(53), Fall Meet Suppl., Abstract B13C-0452Google Scholar
  113. Schuster PF, Striegl RG, Aiken GR, Krabbenhoft DP, DeWild JF, Butler KI, Kamark B, Dornblaser M (2011) Mercury export from the Yukon River Basin and potential response to a changing climate. Env Sci Tech 45:9262–9267CrossRefGoogle Scholar
  114. Shulski M, Wendler G (2007) The climate of Alaska. Univ of Alaska Press, Fairbanks, AKGoogle Scholar
  115. Sloan CE, Kernodle DR, Huntsinger R (1986) Hydrologic reconnaissance of the Unalakleet River Basin, Alaska, 1982–1983. US Geol Surv Water Resour Invest Rep 86-4089Google Scholar
  116. Sophocleous M (2002) Inóeracóions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67CrossRefGoogle Scholar
  117. Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett. doi:10.1029/2005GL024413
  118. Trainer FW (1960) Geology and ground-water resources of the Matanuska Valley agricultural area, Alaska. US Geol Surv Water Suppl Pap 1494Google Scholar
  119. Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14CrossRefGoogle Scholar
  120. US Census Bureau (2012) 2010 Census state area measurements and internal point coordinates. http://www.census.gov/geo/www/2010census/statearea_intpt.html. Accessed 1 May 2012
  121. US Geological Survey (2012a) National hydrography dataset. Get NHD Data at. http://nhd.usgs.gov/data.html. Accessed 1 August 2012
  122. US Geological Survey (2012b) Recent earthquakes. In: Current volcanic activity. Available via Alaska Volcano Observaóry. http://www.avo.alaska.edu/earthquakes/. Accessed 1 June 2012
  123. US Geological Survey (2012c) Water-data report 2011: 15304000 Kuskokwim River at Crooked Creek, AK. Available via Alaska Science Center. http://wdr.water.usgs.gov/wy2011/pdfs/15304000.2011.pdf. Accessed 30 May 2012
  124. US Geological Survey (2012d) Water-data report 2011: 15565447 Yukon River at Pilot Station, AK. Available via Alaska Science Center. http://wdr.water.usgs.gov/wy2011/pdfs/15565447.2011.pdf. Accessed 30 May 2012
  125. van Everdingen R (ed) (1998 revised May 2005) Multi-language glossary of permafrost and related ground-ice terms. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, COGoogle Scholar
  126. Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett. doi:10.1029/2007GL030216
  127. Wanty RB, Wang B, Vohden J, Day WC, Gough LP (2010) Aufeis accumulations in stream bottoms in arctic and subarctic environments as a possible indicator of geologic structure. In: Gough LP, Day WC (eds) 2010, Recent US Geological Survey studies in the Tintina Gold Province, Alaska, United States, Yukon, Canada: results of a 5-year project. US Geol Surv Sci Invest Rep 2007-5289Google Scholar
  128. Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water 38:589–604CrossRefGoogle Scholar
  129. West JJ, Plug LJ (2008) Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J Geophys Res F Earth Surf. doi:10.1029/2006JF000696
  130. Winkler GR, with contributions by Mackevett EM Jr, Plafker G, Richter DH, Rosenkrans DS, Schmoll HR (2000) A geologic guide to Wrangell-Saint Elias National Park and Preserve, Alaska: a tectonic collage of northbound terranes. US Geol Surv Prof Pap 1616Google Scholar
  131. Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45CrossRefGoogle Scholar
  132. Woo MK, Kane DL, Carey SK, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac Process 19:237–254CrossRefGoogle Scholar
  133. Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr Periglac Process 14:151–160CrossRefGoogle Scholar
  134. Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M, Hinzman LD (2003) Impacts of wildfire on the permafrost in the boreal forests of interior Alaska. J Geophys Res D Atmos. doi:10.1029/2001JD000438
  135. Yoshikawa K, Hinzman LD, Kane DL (2007) Spring and aufeis (icing) hydrology in Brooks Range, Alaska. J Geophys Res G Biogeosci. doi:10.1029/2006JG000294
  136. Younger PL (1989) Devensian periglacial influences on the development of spatially variable permeability in the Chalk of southeast England. Q J Eng Geol 22:343–354CrossRefGoogle Scholar
  137. Zarnetske JP, Gooseff MN, Brosten TR, Bradford JH, McNamara JP, Bowden WB (2007) Transient storage as a function of geomorphology, discharge, and permafrost active layer conditions in Arctic tundra streams. Water Resourc Res. doi:10.1029/2005WR004816

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • J. B. Callegary
    • 1
  • C. P. Kikuchi
    • 1
    • 2
  • J. C. Koch
    • 2
  • M. R. Lilly
    • 3
  • S. A. Leake
    • 1
  1. 1.US Geological Survey Arizona Water Science CenterTucsonUSA
  2. 2.US Geological Survey Alaska Science CenterAnchorageUSA
  3. 3.GW ScientificFairbanksUSA

Personalised recommendations