Advertisement

Hydrogeology Journal

, Volume 21, Issue 1, pp 271–280 | Cite as

Permafrost degradation and subsurface-flow changes caused by surface warming trends

  • Andrew Frampton
  • Scott L. Painter
  • Georgia Destouni
Paper

Abstract

Change dynamics of permafrost thaw, and associated changes in subsurface flow and seepage into surface water, are analysed for different warming trends in soil temperature at the ground surface with a three-phase two-component flow system coupled to heat transport. Changes in annual, seasonal and extreme flows are analysed for three warming-temperature trends, representing simplified climate-change scenarios. The results support previous studies of reduced temporal variability of groundwater flow across all investigated trends. Decreased intra-annual flow variability may thus serve as an early indicator of permafrost degradation before longer-term changes in mean flows are notable. This is advantageous since hydrological data are considerably easier to obtain, may be available in longer time series, and generally reflect larger-scale conditions than direct permafrost observations. The results further show that permafrost degradation first leads to increasing water discharge, which then decreases as the permafrost degradation progresses further to total thaw. The most pronounced changes occur for minimum annual flows. The configuration considered represents subsurface discharge from a generic heterogeneous soil-type domain.

Keywords

Permafrost hydrogeology Climate change Multiphase flow Heat transport Numerical modelling 

Dégradation du permafrost et changement des écoulements souterrains dus à des tendances au réchauffement de surface

Résumé

Le changement de dynamiques du dégel du permafrost et les changements associés des écoulements souterrains et des exfiltration vers les eaux de surface sont analysés pour différentes tendances de réchauffement de la température du sol à la surface selon un système d’écoulement triphasé à deux composantes couplé au transport de la chaleur. Les changements des écoulements annuels, saisonniers et extrêmes sont analysés pour trois tendances d’élévation de la température représentant des scénarios simplifiés de changement climatique. Les résultats sont cohérents avec des études antérieures concernant la réduction de la variabilité temporelle des écoulements souterrains pour toutes les tendances simulées. La diminution de la variabilité des écoulements inter annuels peut ainsi servir d’indicateur précoce de la dégradation du permafrost avant que l’effet des changements sur le long terme soit notable sur les écoulements moyens. Ceci représente un avantage du fait que les données hydrologiques sont beaucoup plus faciles à obtenir, peuvent être disponibles pour de longues séries temporelles et reflètent généralement des évolutions à plus grande échelle que des observations directes sur le permafrost. Les résultats de plus montrent que la dégradation du permafrost conduit d’abord à une augmentation des débits dans les zones de décharge, puis à leur diminution lors de la progression de la dégradation du permafrost jusqu’au dégel complet. Les modifications les plus marquées se produisent pour les écoulements annuels minimums. La configuration considérée concerne le débit d’écoulement souterrain dans les zones de décharge pour un sol type générique hétérogène.

La degradación del permafrost y los cambios en el flujo subsuperficial causado por las tendencias de calentamiento de la superficie

Resumen

Se analiza la dinámica del cambio en el descongelamiento del permafrost, y los cambios asociados al flujo subsuperficial y a la infiltración del agua superficial, para diferentes tendencias de calentamiento en la temperatura de los suelos en la superficie del terreno con tres fases, dos componentes del sistema de flujo acoplados con el transporte de calor. Los cambios en los flujos anual, estacional y extremos son analizados para tres tendencias de las temperaturas de calentamiento representando escenarios simplificados de cambios climáticos. Los resultados se apoyan en estudios previos de la reducida variabilidad temporal del flujo de agua subterránea a través de todas las tendencias investigadas. La disminución de la variabilidad del flujo interanual puede así servir como un indicador temprano de la degradación del permafrost antes que los cambios a largo plazo en los flujos medios sean notables. Esto es ventajoso ya que los datos hidrológicos son considerablemente más fáciles de obtener, pueden estar disponibles en series de tiempo más largas, y generalmente reflejan condiciones de una escala mayor que las observaciones directas del permafrost. Los resultados además muestran que la degradación del permafrost primero lleva a un aumento en la descarga del agua, que luego disminuye cuando la degradación del permafrost progresa más allá del descongelamiento total. Los cambios más pronunciados ocurren para los flujos mínimos anuales. La configuración considerada representa la descarga subsuperficial a partir de un dominio genérico de un suelo de tipo heterogéneo.

地表温度升高导致永久冻土退化和地下径流改变

摘要

本文通过耦合热交换三相、二组份流动系统探讨地表面土壤温度不同增温条件下永久冻土消融,以及与之相关的地下径流改变及地表水渗漏的变化动力学。将气候变化场景简化为三种不同的增温趋势,分析多年、季节性以及极端的径流变化。所有研究趋势下的结果均支持地下水径流时间变化减少这一先前研究。因此在年均径流长期变化量显著前,年内径流变化量减少可作为永久冻土退化的一个早期信号。因为水文数据相对容易获得,可能存在长时间序列,比起直接的冻土测量,通常更能反映大规模的条件,因此更为有利。结果进一步表明,永久冻土退化首先导致排泄量增加,然后随着永久冻土进一步解冻,排泄量减少。最显著的变化发生在年均径流量最小的时候。考虑的结构代表了来自各向异性土壤类型主导的地下排泄区。

Degradação do permafrost e alteração no escoamento subsuperficial devido a mudanças causadas por tendências de aquecimento superficial

Resumo

A mudança da dinâmica do degelo no permafrost e as correspondentes alterações no escoamento subsuperficial e na drenagem para as águas superficiais são analisadas para diferentes tendências de aquecimento da temperatura do solo à superfície do terreno com um sistema de fluxo, acoplado a transporte de calor, para três fases e duas componentes. São analisadas as mudanças dos escoamentos anuais, sazonais e extremos para três tendências de aumento de temperaturas, representando cenários simplificados de alterações climáticas. Os resultados apoiam estudos anteriores que mostram a reduzida variabilidade temporal do escoamento de água, atravessando todas as tendências investigadas. A diminuição da variabilidade do escoamento intra-anual pode, portanto, servir como um indicador precoce da degradação do permafrost, antes de se notarem mudanças nos escoamentos médios a prazos mais longos. Isto é vantajoso uma vez que os dados hidrológicos são consideravelmente mais fáceis de obter, podendo estar disponíveis séries temporais mais longas e, em geral, refletindo uma maior escala temporal que as condições de observação direta do permafrost. Os resultados mostram ainda que a primeira degradação do permafrost leva ao aumento da descarga de água, a qual, em seguida, diminui à medida que a degradação do permafrost progride mais para o descongelamento total. As mudanças mais acentuadas ocorrem para os escoamentos anuais mínimos. A configuração considerada representa a descarga subsuperficial proveniente de um domínio genérico de solo heterogéneo.

Notes

Acknowledgments

This study was funded by the Swedish Research Council (VR; project number 2007-8393), and is part of the research within the Climate Community of the Swedish e-Science Research Centre (SeRC).

References

  1. Anisimov O, Reneva S (2006) Permafrost and changing climate: the Russian perspective. Ambio 35:169–175CrossRefGoogle Scholar
  2. Arctic-HYDRA (2010) The arctic hydrological cycle monitoring, modelling and assessment programme: science and implementation. Grafia Kommunikasjon AS, OsloGoogle Scholar
  3. Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36:L22401. doi: 10.1029/2009GL039225 CrossRefGoogle Scholar
  4. Bring A, Destouni G (2009) Hydrological and hydrochemical observation status in the Pan-Arctic drainage basin. Polar Res 28:327–338CrossRefGoogle Scholar
  5. Brutsaert W (2008) Long-term groundwater storage trends estimated from streamflow records: climatic perspective. Water Resour Res 44:W02409CrossRefGoogle Scholar
  6. Cui X, Graf H (2009) Recent land cover changes on the Tibetan Plateau: a review. Clim Change 94:47–61CrossRefGoogle Scholar
  7. Frampton A, Painter SL, Lyon SW, Destouni G (2011) Non-isothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change. J Hydrol 403:352–359. doi: 10.1016/j.jhydrol.2011.04.010 CrossRefGoogle Scholar
  8. Francis JA, White DM, Cassano JJ, Gutowski WJ Jr, Hinzman LD, Holland MM, Steele MA, Vörösmarty CJ (2009) An arctic hydrologic system in transition: feedbacks and impacts on terrestrial, marine, and human life. J Geophys Res 114:G04019. doi: 10.1029/2008JG000902 CrossRefGoogle Scholar
  9. Frey KE, McClelland JW (2009) Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process 23(1):169–182Google Scholar
  10. Grimm RE, Painter SL (2009) On the secular evolution of groundwater on Mars. Geophys Res Lett 36:L24803CrossRefGoogle Scholar
  11. Hinzman LD et al (2005) Evidence and implications of recent climate change in Northern Alaska and other arctic regions. Clim Chang 72:251–298CrossRefGoogle Scholar
  12. Lyon SW, Destouni G (2010) Changes in catchment-scale recession flow properties in response to permafrost thawing in the Yukon River Basin. Int J Climatol 30(14):2138–2145. doi: 10.1002/joc.1993 CrossRefGoogle Scholar
  13. Lyon SW, Destouni G, Giesler R, Humborg C, Mörth M, Seibert J, Karlsson J, Troch PA (2009) Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis. Hydrol Earth Syst Sci 13:595–604. doi: 10.5194/hess-13-595-2009 CrossRefGoogle Scholar
  14. Lyon SW, Mörth CM, Humborg C, Giesler R, Destouni G (2010) The relationship between subsurface hydrology and dissolved carbon fluxes for a sub-arctic catchment. Hydrol Earth Syst Sci 14:941–950CrossRefGoogle Scholar
  15. MacLean RM, Oswood MW, Irons JG III, McDowell WH (1999) The effect of permafrost on stream biogeochemistry: a case study of two streams in the Alaskan (USA) taiga. Biogeochemical 47:239–267CrossRefGoogle Scholar
  16. McNamara JP, Kane DL, Hobbie J, Kling GW (2008) Hydrologic and biogeochemical controls on the spatial and temporal patterns of nitrogen and phosphorus in an Arctic river. Hydrol Process 17:3294–3309CrossRefGoogle Scholar
  17. Nelson FE (2003) GEOCRYOLOGY: enhanced—(un)frozen in time. Science 299:1673–1675CrossRefGoogle Scholar
  18. Painter SL (2011) Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications. Comput Geosci 15:69–85. doi: 10.1007/s10596-010-9197-z CrossRefGoogle Scholar
  19. Painter SL, Grimm RE (2007) Three-phase simulations of moisture movement in the Martian subsurface. In: Albee AL, Kieffer HH (eds) Sixth International Conference on Mars, Pasadena, CA, July 20–25, 2003. Lunar and Planet. Inst., Houston, TX, 3272 ppGoogle Scholar
  20. Riseborough D, Shiklomanov N, Etzelmüller B, Gruber S, Marchenko S (2008) Recent advances in permafrost modelling. Permafr Periglac Process 19:137–156. doi: 10.1002/ppp.615 Google Scholar
  21. Smedberg E, Mörth CM, Swaney DP, Humborg C (2006) Modeling hydrology and silicon-carbon interactions in taiga and tundra biomes from a landscape perspective: implications for global warming feedbacks. Global Biogeochem Cy 20(2):GB2014. doi: 10.1029/2005GB002567 CrossRefGoogle Scholar
  22. Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34:L12402CrossRefGoogle Scholar
  23. Woo M, Kane DL, Carey SK, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac Process 19:237–254CrossRefGoogle Scholar
  24. Zhang T et al (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110:D16101. doi: 10.1029/2004JD005642 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrew Frampton
    • 1
    • 2
  • Scott L. Painter
    • 3
  • Georgia Destouni
    • 1
    • 2
  1. 1.Department of Quaternary Geology and Physical GeographyStockholm UniversityStockholmSweden
  2. 2.Bert Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
  3. 3.Computational Earth Sciences Group, Earth and Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations