Hydrogeology Journal

, Volume 21, Issue 1, pp 41–52 | Cite as

Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA)

  • Douglas L. Kane
  • Kenji Yoshikawa
  • James P. McNamara
Paper

Abstract

Fundamental knowledge of groundwater systems in areas of permafrost is often lacking. The likelihood of finding good quality groundwater resources of acceptable quantities generally decreases as the areal coverage of permafrost increases. In areas of continuous permafrost, the probability of finding areas of groundwater recharge and discharge are minimal. Still, in northeastern Alaska (USA), the presence of numerous springs and associated downstream aufeis formations clearly indicates that there has to be a groundwater system with the required complementary areas of groundwater recharge and transmission. Recharge zones and transmission pathways in this area of extensive permafrost, however, are essentially unknown. This study shows that the recharge occurs on the south side of the Brooks Range in northeastern Alaska, where extensive limestone outcrops are found. The transmission zone is beneath the permafrost, with discharge occurring through the springs via taliks through the permafrost (where faults are present) and also likely at the northern edge of the permafrost along the Beaufort Sea coast.

Keywords

Hydrochemistry Groundwater flow Permafrost Springs Alaska (USA) 

Ecoulement souterrain régional dans une zone cartographiée comme pergélisol continu, NE Alaska (USA)

Résumé

La connaissance fondamentale des systèmes aquifères souterrains en zones de pergélisol manque souvent. La probabilité de trouver des ressources en eau souterraine de bonne qualité en quantités acceptables décroît généralement lorsque la couverture régionale de pergélisol augmente. Dans les zones de pergélisol continu, la probabilité de découvrir des aires de recharge et de décharge de la nappe est minime. Cependant, dans le Nord-Est de l’Alaska (USA), la présence de nombreuses sources et aufeis aval associés indique clairement qu’il doit exister un système aquifère souterrain avec en complément les aires nécessaires à sa recharge et au transfert. Toutefois, Les aires de recharge et les voies de transfert dans cette région de pergélisol étendu sont fondamentalement inconnues. La présente étude montre que la recharge a lieu sur le versant Sud de la Brooks Range dans le Nord-Est de l’Alaska, où l’on trouve des affleurements calcaire étendus. La zone de transfert se trouve sous le pergélisol, la décharge ayant lieu à travers le pergélisol (où des fractures sont présentes), par des sources sur taliks et vraisemblablement aussi en bordure Nord du pergélisol, le long du littoral de la Mer de Beaufort.

Flujo regional de agua subterránea en un área mapeada como un permafrost continuo, NE Alaska (EEUU)

Resumen

El conocimiento fundamental de los sistemas de agua subterránea en áreas de permafrost permanentes a menudo es insuficiente. La probabilidad de investigar los recursos de aguas subterráneas de buena calidad en cantidades aceptables generalmente decrece cuando la cobertura areal del permafrost se incrementa. En un área de permafrost continuo, la probabilidad de encontrar áreas de recarga y descarga de agua subterránea son mínimas. Sin embargo, en el noreste de Alaska (EEUU), la presencia de numerosos manantiales asociada a la formación de hielo superficial aguas abajo claramente indica que debe ser un sistema de aguas subterráneas con las necesarias áreas complementarias de recarga y transmisión. Sin embargo, las zonas de recarga y las trayectorias de la transmisión en esta área del extenso permafrost, son esencialmente desconocidas. Este estudio muestra que la recarga se produce en el lado sur de las Brooks Range en el noreste de Alaska, donde se encuentran extensos afloramientos de calizas. La zona de transmisión está debajo del permafrost, con la descarga a través de los manantiales existentes a través de los taliks del permafrost (donde están presentes fallas) y probablemente también en el borde norte el permafrost a lo largo de la costa del mar Beaufort.

美国阿拉斯加东北部连续性永久冻土区的区域地下水流

摘要

人们对于多年冻土地区地下水系统的基本了解往往是比较缺乏的。寻找达到一定量的优质地下水资源的可能性随着永久冻土层覆盖面积的增加在逐渐减小。在连续性永久冻土的地区,找到地下水的补给和排泄区的可能性是极小的。然而,在美国阿拉斯加的东北部,大量泉的出现和与之相关联的下游的积冰的形成清楚地表明,这个地区肯定有一个地下水系统,并且这个地下水系统有地下水补给和运移所需的互补区。然而,在永久冻土大量分布的地区,补给区和运移路径从本质上来说是不知道的。本次研究表明,补给发生在灰岩露头大量出现的阿拉斯加东北部的布鲁克斯山脉的南侧。运移带在永久冻土层之下,而地下水是以泉的形式来排泄的,泉水是经由永冻层(其中有断层出现)中的融区流出的;另外,运移带也可能是在波弗特海沿岸的永久冻土层的北部边缘。

Fluxo regional de água subterrânea numa área cartografada como permafrost contínuo, NE do Alasca (EUA)

Resumo

O conhecimento básico dos sistemas de águas subterrâneas em áreas de permafrost é muitas vezes inexistente. A probabilidade de encontrar recursos hídricos subterrâneos de boa qualidade em quantidades aceitáveis geralmente diminui à medida que aumenta a área coberta por permafrost. Nas áreas de permafrost contínuo é mínima a probabilidade de identificar áreas de recarga e de descarga de águas subterrâneas. Ainda assim, no nordeste do Alasca (EUA), a presença de inúmeras nascentes associadas a formações “aufeis” a jusante indica claramente que tem que existir um sistema de águas subterrâneas com as necessárias áreas complementares de recarga e de transmissão das águas subterrâneas. As zonas de recarga e os percursos de transmissão nesta área de permafrost extensivo são, no entanto, fundamentalmente desconhecidas. Este estudo mostra que a recarga ocorre no lado sul da Cordilheira de Brooks no nordeste do Alasca, onde ocorrem extensos afloramentos calcários. A zona de transmissão localiza-se sob o permafrost, com a descarga a ocorrer em nascentes através do permafrost (onde existem falhas), via “taliks”, e provavelmente também no extremo norte do permafrost ao longo da costa do Mar de Beaufort.

References

  1. Anderson DM, Morgenstern NR (1973) Physics, chemistry and mechanics of frozen ground: a review. North American contribution, 2nd International Conference on Permafrost, Yakutsk, U.S.S.R. National Academy of Sciences, Washington, DC, pp 257–288Google Scholar
  2. APHA-AWWA-WEF (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DCGoogle Scholar
  3. Arcone SA, Chacho EF, Delaney AJ (1998) Seasonal structure of taliks beneath arctic streams determined with ground-penetrating radar. Proceedings, Permafrost, Seventh International Conference, Yellowknife, Canada, June 1998, No. 55, Collection Nordicana, Quebec, pp 19–24Google Scholar
  4. Beikman HM, Lathram EH (1976) Preliminary geologic map of northern Alaska. MF 789, US Geological Survey, Reston, VAGoogle Scholar
  5. Bradford J, McNamara JP, Bowden W, Gooseff M (2005) Measuring seasonal thaw depth beneath arctic streams using ground penetrating radar. Hydrol Process 19:2689–2699CrossRefGoogle Scholar
  6. Brewer MC (1958) Some results of geothermal investigations of permafrost in northern Alaska. Trans Am Geophys Union 39(1):19–26CrossRefGoogle Scholar
  7. Brosten TR, Bradford JH, McNamara JP, Zarnetske J, Bowden WB, Johnston ME (2009a) Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar. J Hydrol 373:479–486CrossRefGoogle Scholar
  8. Brosten TR, Bradford JH, McNamara JP, Gooseff MN, Zarnetske JP, Bowden BW, Johnston ME (2009b) Multi-offset GPR methods for hyporheic zone investigations. Near Surf Geophys 247–257Google Scholar
  9. Brown J, Ferrians OJ Jr, Heginbottom JA, Melnikov ES (1998) Revised February 2001. Circum-Arctic map of permafrost and ground-ice conditions. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO, Digital mediaGoogle Scholar
  10. Bureau of Land Management and Alaska Natural History Association (1993) Riches from the earth, a geologic tour along the Dalton Highway, Alaska. Anchorage, AK, 128 ppGoogle Scholar
  11. Burt TP, Williams PJ (1976) Hydraulic conductivity in frozen soils. Earth Surf Proc 1:349–360CrossRefGoogle Scholar
  12. Carey K (1973) Icings Developed from Surface and Groundwater. CRREL Monograph, vol III-D3, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 67 ppGoogle Scholar
  13. Chapman WL, Walsh JE (1993) Recent variations in sea ice and air temperature in high latitudes. Bull Am Meteorol Soc 74(1):33–47CrossRefGoogle Scholar
  14. Childers JM, Sloan CE, Meckel JP, Nauman JW (1977) Hydrologic Reconnaissance of the Eastern North Slope, Alaska, 1975. US Geol Surv Open-File Rep 77–492, 65 ppGoogle Scholar
  15. Deming D, Sass JH, Lachenbruch AH, De Rito RF (1992) Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska. Geol Soc Am Bull 104:528–542CrossRefGoogle Scholar
  16. Ferrians O (1998) Permafrost map of Alaska, USA. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO, Digital mediaGoogle Scholar
  17. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  18. Hall DK, Roswell C (1981) The origin of water feeding icings on the Eastern North Slope of Alaska. Polar Rec 20(128):433–438CrossRefGoogle Scholar
  19. Harden D, Barnes P, Reimnitz E (1977) Distribution and character of Naleds in north-eastern Alaska. Arctic 30(1):28–40Google Scholar
  20. Horiguchi K, Miller RD (1980) Experimental studies with frozen soils in an “Ice Sandwich” permeameter. Cold Reg Sci Technol 3:177–183CrossRefGoogle Scholar
  21. Kane DL (1981) Physical mechanics of aufeis growth. Can J Civ Eng 6(2):186–195CrossRefGoogle Scholar
  22. Kane DL, Slaughter CW (1973) Recharge of a Central Alaska Lake by subpermafrost groundwater. North American contribution, 2nd International Conference on Permafrost, Yakutsk, U.S.S.R. National Academy of Sciences, Washington, DC, pp 458–462Google Scholar
  23. Kane DL, Stein J (1983a) Field evidence of groundwater recharge in interior Alaska. Proceedings, 4th International Permafrost Conference, Fairbanks, AK. National Academy of Sciences. National Academy Press, Washington, DC, pp 572–577Google Scholar
  24. Kane DL, Stein J (1983b) Water movement into seasonally frozen soils. Water Resour Res 19(6):1547–1557CrossRefGoogle Scholar
  25. Kane DL, Hinzman LD, Benson CS, Everett KR (1989) Hydrology of Imnavait creek, an arctic watershed. Holarct Ecol 12:262–269Google Scholar
  26. Kane DL, Hinzman LD, McNamara JP, Zhang Z, Benson CS (2000) An overview of a nested watershed study in Arctic Alaska. Nord Hydrol 4(5):245–266Google Scholar
  27. Kane DL, Hinkel KM, Goering DJ, Hinzman LD, Outcalt SI (2001) Non-conductive heat transport associated with frozen soils. Glob Planet Chang 29(3/4):275–292CrossRefGoogle Scholar
  28. Kane DL, Youcha EK, Stuefer S, Toniolo H, Schnabel W, Gieck R, Myerchin-Tape G, Homan J, Lamb E, Tape K (2012) Meteorological and hydrological data and analysis report for Foothills/Umiat Corridor and Bullen Projects: 2006–2011. Report INE/WERC 12.01, University of Alaska Fairbanks, Water and Environmental Research Center, Fairbanks, AK, 260 ppGoogle Scholar
  29. Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234:689–696CrossRefGoogle Scholar
  30. Linell KA (1973) Risk of uncontrolled flow from wells through permafrost. North American contribution, 2nd International Conference on Permafrost, Yakutsk, U.S.S.R. National Academy of Sciences, Washington, DC, pp 463–468Google Scholar
  31. McNamara JP, Kane DL, Hinzman LD (1998) An analysis of stream flow hydrology in the Kuparuk River Basin, Arctic Alaska: a nested watershed approach. J Hydrol 206:39–57CrossRefGoogle Scholar
  32. Pearson FJ (1965) Use of C13/C12 ratios to correct radiocarbon ages of material initially diluted by limestone. In: Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating, Pulman, WA, June 1965, 357 ppGoogle Scholar
  33. Pearson FJ, Hanshaw BB (1970) Sources of dissolved carbonate species in groundwater and their effects on carbon 14 dating. In: Isotope hydrology 1970, IAEA Symposium 129, Vienna, March 1970, pp 271–286Google Scholar
  34. Rawlins MA et al (2010) Analysis of the arctic system for freshwater cycle intensification: observations and expectations. J Clim 23:5715–5737CrossRefGoogle Scholar
  35. Rowland JC, Travis BJ, Wilson CJ (2011) The role of advective heat transport in Talik development beneath lakes and ponds in discontinuous permafrost. Geophys Res Lett 38:L17504. doi:10.1029/2011GL048497 CrossRefGoogle Scholar
  36. Serreze MC, Walsh JE, Chapin FS III, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morrison J, Zhang T, Barry RG (2000) Observational evidence of recent changes in the northern high-latitude environment. Clim Chang 46:159–207CrossRefGoogle Scholar
  37. Sloan CE, Zenone C, Mayo L (1976) Icings along the Trans-Alaska Pipeline route. US Geol Surv Prof Pap 979, 31 ppGoogle Scholar
  38. Stafford JM, Wendler G, Curtis J (2000) Temperature and precipitation of Alaska: 50 year trend analysis. Theor Appl Climatol 67:33–44CrossRefGoogle Scholar
  39. State of Alaska (2008) Regional geology of the North Slope of Alaska. Department of Natural Resources, Division of Oil and Gas, State of Alaska, Juneau, AKGoogle Scholar
  40. Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Chang Biol 12:686–702CrossRefGoogle Scholar
  41. United States Department of Agriculture, Soil Conservation Service (1963) Soil survey, Fairbanks, Alaska. USDA, Soil Conservation Service, Washington, DCGoogle Scholar
  42. Williams JR (1970) Ground Water in the permafrost regions of Alaska. US Geol Surv Prof Pap 696, 83 ppGoogle Scholar
  43. Williams JR, van Everdingen RO (1973) Groundwater investigations in permafrost regions of North America: a review. North American contribution, 2nd International Conference on Permafrost, Yakutsk, U.S.S.R. National Academy of Sciences, Washington, DC, pp 435–446Google Scholar
  44. Yoshikawa K, Hinzman LD, Kane DL (2007) Spring and aufeis (icing) hydrology in the Brooks Range, Alaska. J Geophys Res 112:G04S43. doi:10.1029/2006JG000294 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Douglas L. Kane
    • 1
    • 3
  • Kenji Yoshikawa
    • 1
  • James P. McNamara
    • 2
  1. 1.Institute of Northern EngineeringUniversity of Alaska FairbanksFairbanksUSA
  2. 2.Department of GeosciencesBoise State UniversityBoiseUSA
  3. 3.Water and Environmental Research CenterFairbanksUSA

Personalised recommendations