Hydrogeology Journal

, Volume 21, Issue 1, pp 107–119 | Cite as

Simulation of subsurface heat and water dynamics, and runoff generation in mountainous permafrost conditions, in the Upper Kolyma River basin, Russia

  • Olga Semenova
  • Liudmila Lebedeva
  • Yury Vinogradov
Paper

Abstract

The Hydrograph model (a distributed process-based model) was applied to the simulation of soil freeze-thaw and runoff processes, to assess the viability of the model approach and the influence of specific environmental factors in a permafrost environment. Three mountainous permafrost watersheds were studied, at the Kolyma Water Balance Station in north-eastern Russia. The watersheds include rocky talus, mountainous tundra and moist larch-forest landscape regimes, and they were modelled at daily time-steps for the period 1971–1984. Simulated results of soil freeze-thaw depth and runoff showed reasonable agreement with observed values. This study reveals and mathematically describes the dependence of surface and subsurface flow on thawing depth and landscape characteristics. Process analysis and modelling in permafrost regions, including ungauged basins, is suggested, with observable properties of landscapes being used as model parameters, combined with an appropriate level of physically based conceptualization.

Keywords

Permafrost landscapes Active layer dynamics Thermal conditions The Hydrograph model Russia 

Simulation de la chaleur, de la dynamique de l’eau de subsurface et du ruissellement dans des conditions de pergélisol montagneux continu, Bassin supérieur de la Rivière Kolyma, Russie

Résumé

Le modèle Hydrograph (modèle basé sur un traitement par parties) a été appliqué à la simulation du gel-dégel du sol et au ruissellement, pour évaluer la viabilité de l’approche modélisée et l’influence des facteurs environnementaux spécifiques dans un environnement de pergélisol. Trois bassins versants de pergélisol montagneux ont été étudiés à la station de jaugeage de Kolyma, dans le Nord-Est de la Russie. Les bassins versants comportent des talus rocheux, de la toundra montagneuse et des étendues humides de forêts de mélèzes; ils ont été modélisés au pas de temps journalier sur la période 1971–1984. Les résultats des simulations portant sur la profondeur gel/dégel du sol et sur le ruissellement montrent un accord raisonnable avec les valeurs observées. Cette étude révèle et décrit de façon mathématique la dépendance des écoulements de surface et de subsurface à la profondeur du dégel et à la géomorphologie. Dans les régions de pergélisol, incluant des bassins non jaugés, on suggère d’analyser les phénomènes et de les modéliser en utilisant les caractéristiques de la géomorphologie comme paramètres de modélisation, et en se plaçant à un niveau approprié de conceptualisation basée sur la physique.

Simulation der Bodenwärme- und Bodenwasserdynamik sowie der Abflussbildung unter Permafrostbedingungen in den Gebirgsregionen des Oberen Kolyma Flusseinzugsgebiets, Russland

Zusammenfassung

Das Hydrograph Modell (ein räumlich verteiltes, prozessbasiertes Modell) wurde für die Simulation von Frost-Tauwechseln in Böden und von Abflussprozessen verwendet, um die Anwendbarkeit des Modellansatzes und den Einfluss spezifischer Umweltfaktoren auf Permafrostumgebungen zu bewerten. Die Untersuchungen wurden in drei bergigen Permafrost-Einzugsgebieten oberhalb der Kolyma Wasserhaushaltsstation im Nordosten Russlands durchgeführt. Die Einzugsgebiete umfassen Landschaften mit Felsschutt, bergiger Tundra und feuchten Lärchenwäldern und wurden für den Zeitraum 1971–1984 modelliert. Die Simulationsergebnisse der Frost- und Tautiefen im Boden und des Abflusses weisen eine gute Übereinstimmung mit den Messwerten auf. In dieser Studie wird die Abhängigkeit von oberirdischem und unterirdischem Abfluss von der Tautiefe und Landschaftsmerkmalen verdeutlicht und mathematisch beschrieben. Für die Analyse und Modellierung von Prozessen in Permafrost-Gebieten, auch in Einzugsgebieten ohne Pegelmessungen, wird eine Kombination messbarer Landschaftseigenschaften als Modellparameter und ein geeignetes Maß an physikalisch basierter Konzeptionalisierung vorgeschlagen.

Simulación del calor subsuperficial y dinámica del agua, y generación de escurrimiento en condiciones de permafrost de montaña, en la cuenca alta del Río Kolyma, Rusia

Resumen

Se aplicó el modelo del hidrograma (un modelo distribuido basado en los procesos) en la simulación de la descongelación – congelación de los suelos y los procesos de escurrimiento, para evaluar la viabilidad del enfoque del modelo y la influencia de los factores ambientales específicos en un ambiente de permafrost. Se estudiaron tres cuencas montañosas de permafrost, en la estación de balance de agua de Kolyma en el noreste de Rusia. Las cuencas incluyen talud rocoso, tundras montañosas y regimenes húmedos del paisaje de bosques de alerces, que fueron modelados a pasos de tiempos diarios para el período 1971–1984. Los resultados simulados de la profundidad del suelo congelado – descongelado y el escurrimiento mostraron una concordancia razonable con los valores observados. Este estudio revela y describe matemáticamente la dependencia del flujo superficial y subsuperficial para la profundidad de descongelamiento y las características del paisaje. Se sugiere el proceso de análisis y modelado en regiones de permafrost, incluyendo cuencas no aforadas, con propiedades observables del paisaje que se usan como parámetros del modelo, combinadas con un nivel adecuado de conceptualización con bases físicas.

地热和地下水的动力学模拟与山区永久冻土条件下的产流:以俄罗斯Kolyma河上游平原为例

摘要

本文将单位线模型(一种基于分布式过程的模型)应用到了土壤冻融和径流过程的模拟中,用来评估这种模拟方法的可行性和永久冻土环境下特定的环境因素的影响。文中研究了位于俄罗斯东北部Kolyma水均衡观测站的三个山区永久冻土流域。这三个流域包括岩石倒石堆、山区冻土带和湿润的落叶松林景观区,文中对它们进行了从1971∼1984年以日为时间步长的模拟。土壤冻融深度和径流的模拟结果与观察的结果相一致。此项研究揭示了地表水与地下水对融解深度与景观特点的依赖,并用数学式对其进行了描述。本文提出了以可观察到的景观特性作为模型参数的,和适当水平的物理概念模型相结合的,包括无资料区的永久冻土区的过程分析与模拟。

Simulace podpovrchového tepla, dynamiky vody a tvorby odtoku v podmínkách horského permafrostu, horní povodí řeky Kolyma, Rusko

Abstrakt

Simulácia premŕzania a topenia pôdy a procesov tvorby odtoku bola urobená pomocou distribuovaného, procesovo-orientovaného modelu Hydrograph. Cieľom bolo vyhodnotenie vhodnosti modelového prístupu a vplyvu špecifických environmentálnych faktorov v podmienkach permarfostu. Pracovali sme s troma horskými povodiami v oblasti vodnobilančnej stanice Kolyma, ktorá sa nachádza v severovýchodnej časti Ruska. Typickými charakteristikami povodí sú kamenité sutiny, horská tundra a smrekovcový les na vlhkom podklade. Hydrologický režim bol simulovaný v dennom kroku pre obdobie 1971–1984. Simulované hodnoty hĺbky premŕzania a topenia pôdy a odtoku z povodí boli porovnateľné s meranými údajmi. V práci sme ukázali a matematicky opísali závislosť povrchového a podpovrchového odtoku na hĺbke topenia permafrostu v pôde a charakteristikách krajiny. Bola navrhnutá analýza procesov a modelovanie v oblastiach tvorených permafrostom, vrátane povodí bez pozorovaní, pomocou využitia pozorovateľných charakteristík krajiny ako parametrov modelu v kombinácii s primeranou úrovňou fyzikálne založenej konceptualizácie.

Simulazione delle dinamiche di acqua e calore del sottosuolo e della generazione di portata idrica in condizioni di permafrost di mongagna nell‘Altopiano della Kolyma in Russia

Riassunto

Il modello Hydrograph (distribuito a base fisica) è stato applicato per la simulazione di processi di congelamento-scongelamento del suolo ed il portata idrica, per valutare la fattibilità dell’approccio modellistico e l’influenza di specifici fattori ambientali in un ambiente permafrost. Tre bacini montani su permafrost sono stati studiati presso la stazione di bilancio idrico Kolyma nel nord-est della Russia. I bacini idrografici presentano un paesaggio di ghiaioni, tundra montana e umide foreste di larice, e sono stati modellati con un intervallo giornaliero per il periodo 1971–1984. Le simulazioni di congelamento-scongelamento del suolo e di portata hanno mostrato un ragionevole accordo con i valori osservati. Questo studio rivela e descrive matematicamente la dipendenza del deflusso sotterraneo e superficiale dalla profondità scongelamento e dalle caratteristiche del paesaggio. Questo studio propone l’analisi e la modellazione dei processi nelle regioni permafrost, inclusi i bacini non instrumentati, utilizzando proprietà musurabili del suolo come parametri del modello, in combinazione con una concettualizzazione a base fisica.

Simulação de calor, da dinâmica da água no subsolo e da geração de escoamento em condições montanhosas de permafrost na bacia superior do rio Kolyma, Rússia

Resumo

O modelo Hydrograph (um modelo baseado em processos de distribuição) foi aplicado na simulação de processos de congelamento-descongelamento do solo e de escoamento para avaliar a viabilidade da abordagem do modelo e a influência dos fatores ambientais específicos num ambiente de permafrost. Foram estudadas três bacias hidrográficas montanhosas em condições de permafrost na Estação de Balanço Hídrico de Kolyma, no nordeste da Rússia. As bacias hidrográficas incluem regimes de paisagem em depósitos de talude rochoso, de tundra montanhosa e de florestas húmidas de coníferas, tendo sido modeladas com passos de cálculo diários para o período entre 1971–1984. Os resultados simulados de profundidade de congelamento-descongelamento do solo e do escoamento mostraram um razoável acordo com os valores observados. Este estudo revela e descreve matematicamente a dependência do escoamento superficial e subsuperficial com a profundidade de descongelamento e com as características da paisagem. Sugere-se um processo de análise e de modelação em regiões de permafrost, incluindo bacias com séries incompletas, através do uso de propriedades observáveis das paisagens como parâmetros de entrada do modelo, combinadas com um nível adequado de conceptualização basado na física.

Моделирование динамики тепла и влаги в слое сезонного протаивания и процессов формирования стока в горных условиях бассейна Верхней Колымы, Россия

Абстракт

Целью данного исследования стала верификация алгоритмов гидрологической модели «Гидрограф» в зоне многолетней мерзлоты на основе данных наблюдений за стоком и переменными состояниями деятельного слоя, полученных на Колымской водно-балансовой станции (КВБС). Анализ материалов наблюдений КВБС показал, что глубина деятельного слоя меняется в широких пределах на ограниченной территории и зависит от типа ландшафта. В рамках исследования были выделены три основных типа ландшафтов, значительно отличающихся режимом формирования деятельного слоя, такие как каменные осыпи (гольцы), тундровое редколесье и заболоченный лиственничный лес. Совместное моделирование динамики деятельного слоя и процессов формирования стока было проведено для трех малых водосборов КВБС для периода 1971–1984 гг. с суточным шагом расчета. Рассчитанные глубины протаивания и промерзания почвы и гидрографы стока удовлетворительно согласуются с данными наблюдений. В работе предложен подход к анализу и моделированию процессов формирования стока в зоне распространения мерзлоты, в том числе и в неизученных бассейнах, основанный на использовании физически наблюдаемых свойств ландшафтов в качестве параметров модели и концептуализации гидрологических процессов в модели, адекватной природным явлениям.

Simulácia dynamiky podpovrchového toku tepla v vody a tvorby odtoku v podmienkach horského permafrostu v povodí hornej Kolymy, Rusko

Abstrakt

Simulácia premŕzania a topenia pôdy a procesov tvorby odtoku bola urobená pomocou distribuovaného, procesovo-orientovaného modelu Hydrograph. Cieľom bolo vyhodnotenie vhodnosti modelového prístupu a vplyvu špecifických environmentálnych faktorov v podmienkach permarfostu. Pracovali sme s troma horskými povodiami v oblasti vodnobilančnej stanice Kolyma, ktorá sa nachádza v severovýchodnej časti Ruska. Typickými charakteristikami povodí sú kamenité sutiny, horská tundra a smrekovcový les na vlhkom podklade. Hydrologický režim bol simulovaný v dennom kroku pre obdobie 1971–1984. Simulované hodnoty hĺbky premŕzania a topenia pôdy a odtoku z povodí boli porovnateľné s meranými údajmi. V práci sme ukázali a matematicky opísali závislosť povrchového a podpovrchového odtoku na hĺbke topenia permafrostu v pôde a charakteristikách krajiny. Bola navrhnutá analýza procesov a modelovanie v oblastiach tvorených permafrostom, vrátane povodí bez pozorovaní, pomocou využitia pozorovateľných charakteristík krajiny ako parametrov modelu v kombinácii s primeranou úrovňou fyzikálne založenej konceptualizácie.

Notes

Acknowledgments

While this paper was being reviewed, Professor Yury Vinogradov, an outstanding Russian scientist, hydrologist and modeler, passed away. The authors are grateful to Professor Vinogradov for the knowledge, great love of hydrology and persistence in seeking scientific truth that he shared with us. We also would like to thank the Guest Editor of this special issue, Prof. Ming-Ko Woo, two anonymous reviewers, Richard Boak, and Pam Aishlin from the Boise State University for their constructive comments, valuable suggestions and help with the English language.

References

  1. Bantsekina T (2003) Peculiarities of hydrothermal regime of seasonal thawing layer in coarsely clastic rocks during the spring-summer period (with an example of Upper Kolyma highland) (in Russian). PhD Thesis, The Melnikov Permafrost Institute. Siberian Branch of Russian Academy of Science, Yakutsk, RussiaGoogle Scholar
  2. Bantsekina T, Mikhailov V (2009) On the evaluation of the role of intra-ground condensation in thermal and water regimes of coarse-grained slope deposits (in Russian). Earth Cryosphere XIII (1):40–45Google Scholar
  3. Boyarintsev E (1986) Formation and computation of maximum runoff in spring high water period in the rivers of the Magadan district (in Russian). Proceedings of a scientific conference on problems of hydrology of rivers of zone Baikal/Amur railway and the Far East. Hydrometeoizdat, Leningrad, pp 136–145Google Scholar
  4. Boyarintsev E (1988). Azonal factors of rainfall runoff formation in the territory of Kolyma WBS (in Russian). Proceedings DVNIGMI, vol 135, Far-East Institute of Hydrometeorology, Vladivostok, Russia, pp 67–93Google Scholar
  5. Boyarintsev E, Gopchenko E, Serbov N, Legostaev G (1991) On the issue of intra-ground condensation in the active layer of permafrost (in Russian). No. 1046 GM-91, IC VNIIGMI-MCD, Obinsk, RussiaGoogle Scholar
  6. Boyarintsev E, Serbov N, Popova NI (2006) Formation of the spring high-water balance in minor catchments of the Upper Kolyma River mountainous areas (the Kolymskaya Water Gauge Station records) (in Russian). Bull SVNC DVO RAN 4:12–19Google Scholar
  7. Carey S, Pomeroy J (2009) Progress in Canadian snow and frozen ground hydrology, 2003–2007. Can Water Resour J 32(2):127–138CrossRefGoogle Scholar
  8. Carey S, Woo M (2001) Spatial variability of hillslope water balance, Wolf Creek basin, subarctic Yukon. Hydrol Process 15:3151–3166CrossRefGoogle Scholar
  9. Carey S, Quinton W, Goeller N (2007) Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils. Hydrol Process 21:2560–2571CrossRefGoogle Scholar
  10. Glotov V (2002) Groundwater of the Kontaktovy Creek basin as a factor of general drainage system formation. In: Glotov V, Ukhov N (eds) Factors affecting the formation of a general drainage system of minor mountain rivers in sub-arctic areas (In Russian). SVKNII DVO RAN, Magadan, RussiaGoogle Scholar
  11. Glotov V, Glotova L (2002) Geological-geomorphical and geocryological factors of surface flow formation of Kontaktovy Creek. In: Glotov V, Ukhov N (eds) Factors affecting the formation of a general drainage system of minor mountain rivers in sub-arctic areas (In Russian). SVKNII DVO RAN, Magadan, RussiaGoogle Scholar
  12. Gusev Ye, Nasonova O (2010) Modelling of the thermal and water exchange between land surface and atmosphere (in Russian). Nauka , MoscowGoogle Scholar
  13. Gusev Y, Nasonova O, Dzhogan L (2006) The simulation of runoff from small catchments in the permafrost zone by the SWAP model (in Russian). Water Resour 33(2):133–145CrossRefGoogle Scholar
  14. Janowicz JR, Hedstrom N, Pomeroy J, Granger R, Carey SK (2004) Wolf Creek Research Basin water balance studies. In: King DL, Yang D (eds) Northern research basins water balance. IAHS Publ. 290, IAHS, Wallingford, UK, pp 195–204Google Scholar
  15. Kane D, Hinzman L, McNamara J, Zhang Z, Benson C (2000) An overview of a nested basin study in Arctic Alaska. Nordic Hydrol 31:245–266Google Scholar
  16. Kolymskoye UGMS (1948–1991) The materials of observations at Kolyma water-balance station, 1948–1991. Kolymskoe UGMS (Hydrometeorological Department of the Kolyma Region), Magadan, Russia, Issues 1–34Google Scholar
  17. Korolev Y (1982) Hydrological role of vegetation of Upper Kolyma (in Russian). Izvestia Academy of Science USSR, Biol Series 4:517–529Google Scholar
  18. Kuchment L, Gelfan A, Demidov I (2000) A model of runoff formation on basins in the permafrost zone: case study of the Upper Kolyma River (In Russian). Water Resour 27(4):435–444Google Scholar
  19. Lebedeva L (2012) Modelling of the runoff formation processes in the poorly-gauged basins in the permafrost zone based on data of the experimental and representative basins (in Russian). MSc Thesis, St. Petersburg State University, St. Petersburg. Available via http://www.hydrograph-model.ru/upload/file/2012_MsThesis_Lebedeva.pdf. Accessed November 2012
  20. Lebedeva L, Semenova O (2012) Coupled modelling of the active layer depth dynamics and runoff formation processes with an example of small basins of Kolyma water balance station. Proceedings of the Tenth International Conference on Permafrost, vol 2. Salekhard, Russia, 25–29 June 2012, pp 231–236Google Scholar
  21. Letts MG, Roulet NT, Comer NT, Skarupa MR, Verseghy DL (2000) Parameterization of peatland hydraulic properties for the Canadian Land Surface Scheme. Atmos Ocean 38:141–160CrossRefGoogle Scholar
  22. McCartney SE, Carey SK, Pomeroy JW (2006) Intra-basin variability of snowmelt water balance computations in a subarctic catchment. Hydrol Process 20:1001–1016. doi:10.1002/hyp.6125 CrossRefGoogle Scholar
  23. Mikhailov VM, Bantsekina TV, Ushakov MV (2007) Investigations of the thermal characteristics of groundwater inflow into mountain rivers of the cryolithozone (in Russian). Earth Cryosphere XI(4):57–64Google Scholar
  24. Perlshteyn G, Volobuev I, Pankratova E (1986) Permeability of frozen ground not fully saturated with ice: issues of engineering geocryology concerning placer mining (in Russian). In: Evsiovich A et al (eds) Transactions of All Union Scientific and Research Institute of Gold and Rare Metals VNII-I:40–41Google Scholar
  25. Pomeroy J, Parviainen J, Hedstrom N, Gray D (1998) Coupled modeling of forest snow interception and sublimation. Hydrol Process 12:2317–2337CrossRefGoogle Scholar
  26. Pomeroy JW, Essery RH, Toth B (2004) Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: observations in a subarctic mountain catchment. Ann Glaciol 38:195–201CrossRefGoogle Scholar
  27. Pomeroy J, Gray D, Brown T et al (2007) The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence. Hydrol Process 21:2650–2667CrossRefGoogle Scholar
  28. Quinton W, Gray D, Marsh P (2000) Subsurface drainage from hummock covered hillslopes in Arctic tundra. J Hydrol 237:113–125CrossRefGoogle Scholar
  29. Quinton W, Sharizi T, Carey S, Pomeroy J (2005) Soil water storage and active layer development in a subalpine tundra hillslope, southern Yukon Territory, Canada. Permafrost Periglacial Process 16:369–382. doi:10.1002/ppp.543 CrossRefGoogle Scholar
  30. Quinton W, Hayashi M, Carey S (2008) Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. Hydrol Process 22:2829–2837CrossRefGoogle Scholar
  31. Reynuk U (1959) Condensation in active layer of permafrost (in Russian). Transactions of All Union Scientific and Research Institute of Gold and Rare Metals 13:1–24Google Scholar
  32. Rigon R, Bertoldia G, Overb T (2006) GEOtop: a distributed hydrological model with coupled water and energy budgets. J Hydrometeorol 7(3):371–388CrossRefGoogle Scholar
  33. Schramm I, Boike J, Bolton W, Hinzman L (2007) Application of TopoFlow, a spatially distributed hydrological model, to the Imnavait Creek basin, Alaska. J Geophys Res 112 G04S46, doi:10.1029/2006JG000326
  34. Semenova O (2010) Experience with modelling of runoff formation processes at basins of different scales using data of water-balance stations. In: Status and perspectives of hydrology in small basins (Proc. of the Workshop held at Goslar-Hahnenklee, Germany, 30 March–2 April 2009). IAHS publ. 336, IAHS, Wallingford, UK, pp 167–172Google Scholar
  35. Semenova O, Vinogradova T (2009) A universal approach to runoff processes modelling: coping with hydrological predictions in data-scarce regions. IAHS Publ. 333, IAHS, Wallingford, UK, pp11–19Google Scholar
  36. Semenova O, Lebedeva L, Beldiman I (2012) Computation of runoff engineering characteristics under conditions of lack of hydrometeorological measurements in north-east of Russia. Proceedings of the Tenth International Conference on Permafrost, vol 2, Salekhard, Russia, June 2012, pp 371–376Google Scholar
  37. Snyder F, Sokolov A, Szesztay K (1971) Flood studies: an international guide for collection and processing of data. UNESCO, Paris, 52 ppGoogle Scholar
  38. Sugimoto A, Naito D, Yanagisawa N, Ichiyanagi K, Kurita N, Kubota J, Kotake T, Ohata T, Maximov T, Fedorov A (2003) Characteristics of soil moisture in permafrost observed in East Siberia taiga with stable isotopes of water. Hydrol Process 17:1073–1092CrossRefGoogle Scholar
  39. Suschanskiy S (1999) Peculiarities of elements, forming water balance in the basin of Morozova Creek (in Russian). Kolyma 1:33–40Google Scholar
  40. Suschanskiy S (2002) History of creation, methods, objects and some results of studies in the Kolyma water balance station (in Russian). In: Glotov V, Ukhov N (eds) Factors affecting the formation of a general drainage system of minor mountain rivers in sub-arctic areas. SVKNII DVO RAN, Magadan, RussiaGoogle Scholar
  41. Vinogradov Yu (1988) Mathematical modelling of runoff formation: a critical analysis (in Russian). Gidrometeoizdat, LeningradGoogle Scholar
  42. Vinogradov Yu (2003a) River runoff modelling. In: Shiklomanov IA (ed) Hydrological cycle. Encyclopedia of Life Support Systems (EOLSS), UNESCO EOLSS, OxfordGoogle Scholar
  43. Vinogradov Yu (2003b) Runoff generation and storage in basin. In Shiklomanov IA (ed) Hydrological cycle. Encyclopedia of Life Support Systems (EOLSS), UNESCO EOLSS, OxfordGoogle Scholar
  44. Vinogradov Yu, Vinogradova T (2008) Current problems in hydrology (in Russian). Academia, MoscowGoogle Scholar
  45. Vinogradov Yu, Vinogradova T (2010) Mathematical modelling in hydrology (in Russian). Academia, MoscowGoogle Scholar
  46. Vinogradov Y, Semenova O, Vinogradova T (2011) An approach to the scaling problem in hydrological modelling: the deterministic modelling hydrological system. Hydrol Process 25:1055–1073. doi:10.1002/hyp.7901 CrossRefGoogle Scholar
  47. Woo M (2012) Application of the fill-and-spill concept in permafrost hydrology. Proceedings of the Tenth International Conference on Permafrost, vol 1, Salekhard, Russia, June 2012, pp 449–454Google Scholar
  48. Woo M, Kane D, Carey S, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafrost Periglacial Process 19(2):237–254CrossRefGoogle Scholar
  49. Zhang Z, Kane D, Hinzman L (2000) Development and application of a spatially distributed arctic hydrologic and thermal process model (ARHYTHM). J Hydrol Process 14(6):1017–1044CrossRefGoogle Scholar
  50. Zhang Y, Carey S, Quinton W (2008) Evaluation of the algorithms and parameterizations for ground thawing and freezing simulation in permafrost regions. J Geophys Res Atmos 113:D17116. doi:10.1029/2007JD009343 CrossRefGoogle Scholar
  51. Zhang Y, Carey SK, Quinton WL, Janowicz JR, Pomeroy JW, Flertchinger GN (2010) Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils. Hydrol Earth Syst Sci 14:729–750CrossRefGoogle Scholar
  52. Zhuravin S (2004) Features of water balance for small mountainous basins in East Siberia: Kolyma Water Balance Station case study. IAHS Publ 290, IAHS, Wallingford, UK, pp 28–40Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olga Semenova
    • 1
    • 2
    • 3
  • Liudmila Lebedeva
    • 3
    • 4
  • Yury Vinogradov
    • 1
    • 2
    • 3
  1. 1.Gidrotehproekt Ltd.St. PetersburgRussia
  2. 2.State Hydrological InstituteSt. PetersburgRussia
  3. 3.Hydrograph Model Research Group
  4. 4.Nansen CentreSt. PetersburgRussia

Personalised recommendations