Hydrogeology Journal

, Volume 21, Issue 1, pp 133–147 | Cite as

Spatial and seasonal variability of polygonal tundra water balance: Lena River Delta, northern Siberia (Russia)

  • Manuel Helbig
  • Julia Boike
  • Moritz Langer
  • Peter Schreiber
  • Benjamin R. K. Runkle
  • Lars Kutzbach
Paper

Abstract

The summer water balance of a typical Siberian polygonal tundra catchment is investigated in order to identify the spatial and temporal dynamics of its main hydrological processes. The results show that, besides precipitation and evapotranspiration, lateral flow considerably influences the site-specific hydrological conditions. The prominent microtopography of the polygonal tundra strongly controls lateral flow and storage behaviour of the investigated catchment. Intact rims of low-centred polygons build hydrological barriers, which release storage water later in summer than polygons with degraded rims and troughs above degraded ice wedges. The barrier function of rims is strongly controlled by soil thaw, which opens new subsurface flow paths and increases subsurface hydrological connectivity. Therefore, soil thaw dynamics determine the magnitude and timing of subsurface outflow and the redistribution of storage within the catchment. Hydraulic conductivities in the elevated polygonal rims sharply decrease with the transition from organic to mineral layers. This interface causes a rapid shallow subsurface drainage of rainwater towards the depressed polygon centres and troughs. The re-release of storage water from the centres through deeper and less conductive layers helps maintain a high water table in the surface drainage network of troughs throughout the summer.

Keywords

Water balance Permafrost Heterogeneity Wetlands Russia 

Variabilité saisonnière et spatiale du bilan d’eau de la toundra polygonale: Delta de la rivière Lena, Nord Sibérien (Russie)

Résumé

Le bilan d’eau estival d’un bassin d’alimentation typique de la toundra polygonale sibérienne a fait l’objet d’investigations afin d’identifier la dynamique spatio-temporelle des ses principaux processus hydrologiques. Les résultats montrent que, à côté de la précipitation et de l’évapotranspiration, un flux latéral influence considérablement les conditions hydrogéologiques spécifiques du site. La microtopographie marquée de la toundra polygonale contrôle fortement l’écoulement latéral et la modalité d’emmagasinement du bassin objet de l’investigation. Les bords intacts des polygones centrés bas constituent des barrières hydrologiques, qui libèrent l’eau accumulée en été plus tard que les polygones à bords dégradés et dépressions au dessus des biseaux glacées dégradées. La fonction barrière des bordures est fortement contrôlée par le dégel du sol, qui ouvre de nouveaux chenaux d’écoulement en subsurface et en accroît la connectivité hydrologique. C’est pourquoi, la dynamique du dégel détermine l’instant et le volume d’émission d’eau en subsurface et la redistribution de la réserve dans le bassin versant. Les conductivités hydrauliques des bordures polygonales élevées diminuent brusquement avec la transition d’horizons organiques à des horizons minéraux. Ceci cause un drainage superficiel rapide de l’eau de précipitation vers les centres déprimés des polygones et goulottes. Le relargage de l’eau en réserve depuis les centres à travers des couches plus profondes et moins conductrices aide à maintenir élevée la surface libre de l’aquifère sous le réseau de drainage superficiel des goulottes durant tout l’été.

Variabilidad espacial y estacional del balance de agua de polígonos de tundra: Delta del Río Lena, norte de Siberia (Rusia)

Resumen

Se investiga el balance de agua de verano en una típica cuenca siberiana de polígonos de tundra para identificar la dinámica espacial y temporal de sus principales procesos hidrológicos. Los resultados muestran que, además de la precipitación y evapotranspiración, el flujo lateral influye considerablemente las condiciones hidrológicas del sitio específico. La destacada microtopografía de los polígonos de tundra controla fuertemente el comportamiento del flujo lateral y almacenamiento de la cuenca investigada. Los bordes intactos de los polígonos bajos centrados constituyen barreras hidrológicas, que liberan el agua de almacenamiento del verano después que los polígonos con bordes degradados y canales por encima de cuñas degradadas del hielo. La función de barrera de los bordes está controlada fuertemente por el deshielo del suelo, que abre nuevas trayectorias al flujo subsuperficial y aumenta la conectividad hidrológica subsuperficial. Además, la dinámica de deshielo del suelo determina la magnitud y el tiempo de la salida subsuperficial y la redistribución del almacenamiento dentro de la cuenca. Las conductividades hidráulicas en los bordes elevados del polígono disminuyen drásticamente con la transición de capas orgánicas a minerales. Esto causa un rápido drenaje subsuperficial somero del agua de lluvia hacia el centro de los polígonos deprimidos y canales. La reliberación del agua del almacenamiento desde el centro a través de capas menos conductivas y más profundas ayuda a mantener un nivel freático alto en la red de drenaje superficial de canales durante todo el verano.

多边形冻原地下水均衡的空间和季节变化:以俄罗斯北西伯利亚的Lena河三角洲为例

摘要

为确定它的主要水文过程的时空动态,本文研究了一个典型的西伯利亚多边形冻原流域在夏季的水均衡。结果显示,除了降水和蒸发蒸腾,侧向流在相当程度上影响着特定场地的水文条件。多边形冻原主要的微地形特征强烈控制着研究流域的侧向流和储存行为。在中心偏低的多边形的完整边缘上建造水文屏障,以此可利用退化冰楔之上退化的边缘和凹槽在夏天释放储存的水。边缘上屏障的作用受到土壤解冻强烈的控制,解冻作用打开了地下水流的流径,提高了地下的水文连通性。因此,土壤解冻的动态决定了流出的地下水的规模和时间,以及流域内所储存水量的重新分配。升高的多边形边缘从有机层过渡到矿物层,渗透系数急剧减小。这造成了浅部雨水向凹陷的多边形中心和洼地迅速排水。所储存的水通过更深部的低渗透岩层从中心重新释放,这有助于夏季在地表凹槽排水系统中保持一个较高的水位。

Variabilidade espacial e sazonal do balanço hídrico da tundra poligonal: Delta do rio Lena, norte da Sibéria (Rússia)

Resumo

É investigado o balanço hídrico estival de uma típica bacia hidrográfica de tundra poligonal para identificar as dinâmicas espaciais e temporais dos seus principais processos hidrológicos. Os resultados mostram que, para além da precipitação e da evapotranspiração, o escoamento lateral influencia consideravelmente as condições hidrológicas em cada local. A característica microtopografia da tundra poligonal controla fortemente o escoamento lateral e o comportamento do armazenamento na bacia investigada. Os bordos intactos dos polígonos com centro deprimido constituem barreiras hidrológicas que libertam a água armazenada mais tarde no verão do que nos polígonos com bordos degradados e fendas situadas acima das cunhas de gelo degradadas. A função de barreira dos bordos é fortemente controlada pelo descongelamento do solo que abre novos percursos de escoamento subterrâneo e incrementa a conectividade hidrológica subsuperficial. Consequentemente, a dinâmica do descongelamento do solo determina a magnitude e a temporização do escoamento e a redistribuição do armazenamento dentro da bacia. A condutividade hidráulica nos bordos poligonais elevados diminui drasticamente com a transição entre as camadas orgânicas a as camadas minerais. Isto provoca uma rápida drenagem subsuperficial pouco profunda da água de chuva em direção aos centros deprimidos e às fendas. A re-libertação da água armazenada a partir dos centros através de camadas mais profundas e menos condutivas ajudam a manter ao longo do verão um nível de água elevado na rede de drenagem superficial formada pelas fendas.

References

  1. Alavi N, Warland JS, Berg AA (2006) Filling gaps in evapotranspiration measurements for water budget studies: evaluation of a Kalman filtering approach. Agr Forest Meteorol 141(1):57–66CrossRefGoogle Scholar
  2. Andersen HE (2003) Hydrology, Nutrient processes and vegetation in floodplain wetlands. PhD Thesis, National Environmental Research Institute, Silkeborg, DenmarkGoogle Scholar
  3. Blok D, Heijmans MMPD, Schaepman-Strub G et al (2011) The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosyst 14(7):1055–1065CrossRefGoogle Scholar
  4. Boike J, Wille C, Abnizova A (2008) Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113:G03025. doi:10.1029/2007JG000540 CrossRefGoogle Scholar
  5. Boudreau L, Rouse W (1995) The role of individual terrain units in the water balance of wetland tundra. Clim Res 5(1):31–47CrossRefGoogle Scholar
  6. Bowling L, Kane DL, Gieck R et al (2003) The role of surface storage in a low-gradient arctic watershed. Water Resour Res 39(4):1087. doi:10.1029/2002WR001466 CrossRefGoogle Scholar
  7. Brown VA, McDonnell JJ, Burns DA et al (1999) The role of event water, a rapid shallow flow component, and catchment size in summer stormflow. J Hydrol 217(3):171–190CrossRefGoogle Scholar
  8. Carey SK, Woo MK (2001) Slope runoff processes and flow generation in a subarctic, subalpine catchment. J Hydrol 253:110–129CrossRefGoogle Scholar
  9. Chappell NA, Ternan JL, Williams AG et al (1990) Preliminary analysis of water and solute movement beneath a coniferous hillslope in Mid-Wales, U.K. J Hydrol 116:201–215CrossRefGoogle Scholar
  10. Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18(6):1351–1367CrossRefGoogle Scholar
  11. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agr Forest Meteorol 78:83–105CrossRefGoogle Scholar
  12. Førland EJ (1996) Manual for operational correction of Nordic precipitation data. Norwegian Meteorological Institute, Oslo, NorwayGoogle Scholar
  13. Grigoriev N (1960) The temperature of permafrost in the Lena delta basin: deposit conditions and properties of the permafrost in Yakutia. Yakutsk 2:97–101Google Scholar
  14. Guan XJ, Spence C, Westbrook CJ (2010) Shallow soil moisture–ground thaw interactions and controls, part 2: influences of water and energy fluxes. Hydrol Earth Syst Sci 14(7):1387–1400CrossRefGoogle Scholar
  15. Hinzman LD, Kane DL, Gieck R et al (1991) Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Regions Sci Tech 19(2):95–110CrossRefGoogle Scholar
  16. Inagaki A, Letzel MO, Raasch S et al (2006) Impact of surface heterogeneity on energy imbalance: a study using LES. J Meteorol Soc Jpn 84(1):187–198CrossRefGoogle Scholar
  17. Jorgenson T, Romanovsky V, Harden J et al (2010) Resilience and vulnerability of permafrost to climate change. Can J Forest Res 40(7):1219–1236CrossRefGoogle Scholar
  18. Kane DL, Gieck R, Boudreau L (2008) Water balance for a low gradient watershed in northern Alaska. In: Kane DL, Hinkel KM (eds) Proceedings of the Ninth International Conference on Permafrost, University of Alaska, Institute of Northern Engineering, Fairbanks, AK, pp 883–888Google Scholar
  19. Kulin G, Compton PR (1975) A guide to methods and standards for the measurement of water flow. US Dept. of Commerce, National Bureau of Standards, Washington, DCGoogle Scholar
  20. Kutzbach L (2006) The exchange of energy, water and carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, GermanyGoogle Scholar
  21. Kutzbach L, Wagner D, Pfeiffer E-M (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochem 69(3):341–362CrossRefGoogle Scholar
  22. Langer M, Westermann S, Muster S et al (2011) The surface energy balance of a polygonal tundra site in northern Siberia, part 1: spring to fall. Cryosphere 5(1):151–171CrossRefGoogle Scholar
  23. Leuning R (2007) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Bound-Lay Meteorol 123(2):263–267CrossRefGoogle Scholar
  24. Liljedahl A, Boudreau L, Harazono Y et al (2011) Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 8(11):3375–3389CrossRefGoogle Scholar
  25. Liljedahl AK, Hinzman LD, Schulla J (2012) Ice-wedge polygon type controls low-gradient watershed scale hydrology. In: Hinkel KM (ed) Proceedings of the Tenth International Conference on Permafrost, vol 1: International contributions. The Northern Publisher, Salehard, Russia, pp 231–236Google Scholar
  26. Limpens J, Berendse F, Blodau C et al (2008) Peatlands and the carbon cycle: from local processes to global implications a synthesis. Biogeosciences 5:1475–1491CrossRefGoogle Scholar
  27. MacDonald LA, Turner KW, Balasubramaniam AM et al (2012) Tracking hydrological responses of a thermokarst lake in the Old Crow Flats (Yukon Territory, Canada) to recent climate variability using aerial photographs and paleolimnological methods. Hydrol Process 26(1):117–129CrossRefGoogle Scholar
  28. Mauder M, Liebethal C, Göckede M et al (2006) Processing and quality control of flux data during LITFASS-2003. Bound-Lay Meteorol 121(1):67–88CrossRefGoogle Scholar
  29. McDonnell JJ, Owens IF, Stewart MK (1991) A case study of shallow flow paths in a steep zero-order basin. J Am Water Resour Assoc 27(4):679–685CrossRefGoogle Scholar
  30. McGlynn BL, McDonnell JJ, Seibert J et al (2004) Scale effects on headwater catchment runoff timing, flow sources, and groundwater–streamflow relations. Water Resour Res 40(7):W07504. doi:10.1029/2003WR002494 CrossRefGoogle Scholar
  31. McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Bound-Lay Meteorol 43(3):231–245CrossRefGoogle Scholar
  32. McNamara JP, Oatley JA, Kane DL et al (2008) Case study of a large summer flood on the North Slope of Alaska: bedload transport. Hydrol Res 39(4):299–308CrossRefGoogle Scholar
  33. Meerveld HJT, McDonnell JJ (2006) Threshold relations in subsurface stormflow: 2. the fill and spill hypothesis. Water Resour Res 42(2):W02411. doi:10.1029/2004WR003800 CrossRefGoogle Scholar
  34. Metcalfe RA, Buttle JM (2001) Soil partitioning and surface store controls on spring runoff from a boreal forest peatland basin in north-central Manitoba, Canada. Hydrol Process 15(12):2305–2324CrossRefGoogle Scholar
  35. Minke M, Donner N, Karpov NS et al (2007) Distribution, diversity, development and dynamics of polygon mires: examples from Northeast Yakutia (Siberia). Peatlands Int 1:36–40Google Scholar
  36. Minke M, Donner N, Karpov NS et al (2009) Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr Periglac Process 20(4):357–368CrossRefGoogle Scholar
  37. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Bound-Lay Meteorol 37(1):17–35CrossRefGoogle Scholar
  38. Muster S, Langer M, Heim B et al (2012) Subpixel heterogeneity of ice-wedge polygonal tundra: a multi-scale analysis of land cover and evapotranspiration in the Lena River Delta, Siberia. Tellus B 64. doi:10.3402/tellusb.v64i0.17301 CrossRefGoogle Scholar
  39. Nimmo JR, Schmidt KM, Perkins KS et al (2009) Rapid measurement of field-saturated hydraulic conductivity for areal characterization. Vadose Zone J 8(1):142–149CrossRefGoogle Scholar
  40. Petrone KC, Jones JB, Hinzman LD et al (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res 111:G02020. doi:10.1029/2005JG000055 CrossRefGoogle Scholar
  41. Petrone RM, Devito KJ, Silins U et al (2008) Transient peat properties in two pond-peatland complexes in the sub-humid Western Boreal Plain, Canada. Mires Peat 3:1–13Google Scholar
  42. Phillips RW, Spence C, Pomeroy JW (2011) Connectivity and runoff dynamics in heterogeneous basins. Hydrol Process 25(19):3061–3075Google Scholar
  43. Quinton W, Carey S (2008) Towards an energy-based runoff generation theory for tundra landscapes. Hydrol Process 22(23):4649–4653CrossRefGoogle Scholar
  44. Quinton W, Marsh P (1999) A conceptual framework for runoff generation in a permafrost environment. Hydrol Process 13(16):2563–2581CrossRefGoogle Scholar
  45. Quinton W, Hayashi M, Carey S (2008) Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. Hydrol Process 22(15):2829–2837CrossRefGoogle Scholar
  46. ROSHYDROMET (2012) Weather Information for Tiksi. Russian Federal Service for Hydrometeorology and Environmental Monitoring, Moscow. Available at http://www.worldweather.org/107/c01040.htm. Accessed 1 August 2012
  47. Roulet NT, Woo MK (1986a) Wetland and lake evaporation in the low Arctic. Arct Alp Res 195–200Google Scholar
  48. Roulet NT, Woo MK (1986b) Hydrology of a wetland in the continuous permafrost region. J Hydrol 89:73–91CrossRefGoogle Scholar
  49. Rovansek R, Hinzman LD, Kane DL (1996) Hydrology of a tundra wetland complex on the Alaskan Arctic coastal plain, U.S.A. Arct Alp Res 28(3):311–317CrossRefGoogle Scholar
  50. Rubel F, Hantel M (1999) Correction of daily rain gauge measurements in the Baltic Sea drainage basin. Nord Hydrol 30(3):191–208Google Scholar
  51. Schuur EA, Bockheim J, Canadell JG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioSci 58(8):701–714CrossRefGoogle Scholar
  52. Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA, Natural Resources Conservation Service, Washington, DCGoogle Scholar
  53. Spence C (2010) A paradigm shift in hydrology: storage thresholds across scales influence catchment runoff generation. Geogr Compass 4(7):819–833CrossRefGoogle Scholar
  54. Spence C, Woo MK (2003) Hydrology of subarctic Canadian shield: soil-filled valleys. J Hydrol 279:151–166CrossRefGoogle Scholar
  55. Townsend-Small A, McClelland J, Max Holmes R et al (2011) Seasonal and hydrologic drivers of dissolved organic matter and nutrients in the upper Kuparuk River, Alaskan Arctic. Biogeochem 103(1):109–124CrossRefGoogle Scholar
  56. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteorol Soc 106(447):85–100CrossRefGoogle Scholar
  57. White D, Hinzman LD, Alessa L et al (2007) The arctic freshwater system: changes and impacts. J Geophys Res 112:G04S54. doi:10.1029/2006JG000353 CrossRefGoogle Scholar
  58. Wilson K, Goldstein A, Falge E et al (2002) Energy balance closure at FLUXNET sites. Agr Forest Meteorol 113(1–4):223–243CrossRefGoogle Scholar
  59. Woo MK, Guan XJ (2006) Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian High Arctic. Permafr Periglac Process 17(4):309–323CrossRefGoogle Scholar
  60. Woo MK, Young KL (2006) High arctic wetlands: their occurrence, hydrological characteristics and sustainability. J Hydrol 320:432–450CrossRefGoogle Scholar
  61. Woo MK, Kane DL, Carey S et al (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac Process 19(2):237–254CrossRefGoogle Scholar
  62. Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour Res 45:W05414. doi:10.1029/2008WR006880 CrossRefGoogle Scholar
  63. Yang D, Kane DL, Zhang Z et al (2005) Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys Res Lett 32(19):L19501. doi:10.1029/2005GL024057 CrossRefGoogle Scholar
  64. Young KL, Abnizova A (2011) Hydrologic thresholds of ponds in a polar desert wetland environment, Somerset Island, Nunavut, Canada. Wetl 31(3):535–549CrossRefGoogle Scholar
  65. Zona D, Lipson DA, Zulueta RC et al (2011) Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain. J Geophys Res 116:G00108. doi:10.1029/2009JG001241 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manuel Helbig
    • 1
  • Julia Boike
    • 2
  • Moritz Langer
    • 2
  • Peter Schreiber
    • 1
  • Benjamin R. K. Runkle
    • 1
  • Lars Kutzbach
    • 1
  1. 1.Institute of Soil ScienceUniversity of HamburgHamburgGermany
  2. 2.Alfred Wegener Institute for Marine and Polar ResearchPotsdamGermany

Personalised recommendations