Advertisement

Hydrogeology Journal

, Volume 21, Issue 1, pp 121–131 | Cite as

Using streamflow characteristics to explore permafrost thawing in northern Swedish catchments

  • Ylva SjöbergEmail author
  • Andrew Frampton
  • Steve W. Lyon
Paper

Abstract

The recent and rapid warming of the Arctic leads to thawing of permafrost, which influences and changes subsurface water-flow systems in such landscapes. This study explores the utility of catchments as “sentinels of change” by considering long-term discharge data from 17 stations on unregulated rivers in northern Sweden and analyzing trends in annual minimum discharge and recession flow characteristics. For the catchments considered, the annual minimum discharge has increased significantly (based on the Mann Kendall test at a 95 % confidence level) in nine of the catchments and decreased significantly in one catchment. Considering changes in recession-flow characteristics, seven catchments showed significant trends consistent with permafrost thawing while two catchments showed significant trends in the opposite direction. These results are mechanistically consistent with generic physically based modeling studies and the geological setting, as the catchments considered span the spatial limit of permafrost extent. This study illuminates the potential for using hydrologic observations to monitor changes in catchment-scale permafrost. Further, this opens the door for research to isolate the mechanisms behind the different trends observed and to gauge their ability to reflect actual permafrost conditions at the catchment scale.

Keywords

Groundwater–permafrost interactions Groundwater/surface-water relations Streamflow trends Sweden Climate change 

Utilisation des caractéristiques de l’écoulement superficiel pour explorer la fonte du pergélisol sur des bassins versants de la Suède du Nord

Résumé

Le récent et rapide réchauffement de l’Arctique entraîne la fonte du pergélisol, ce qui influence et modifie les systèmes d’écoulement d’eau de subsurface dans des territoires de ce type. La présente étude explore la fonctionnalité des bassins versants comme “sentinelles du changement”, en considérant les données de débit sur le long terme provenant de 17 stations implantées sur des rivières non régulées du Nord de la Suède et en analysant les tendances du débit minimum annuel et des caractéristiques du tarissement. Pour les bassins versants considérés, le débit minimum annuel a cru significativement (d’après le test de Mann Kendall à un niveau de confiance de 95 %) sur neuf des bassins versants et décru significativement sur l’un d’entre eux. En ce qui concerne le changement des caractéristiques du tarissement, sept bassins versants ont montré des tendances significatives cohérentes avec la fonte du pergélisol, tandis que deux bassins versants ont montré des tendances significatives dans le sens opposé. Ces résultats sont, au plan des mécanismes en accord avec les études générales par modélisation physique et avec le contexte géologique, étant donné que les bassins versants considérés recoupent la limite d’extension spatiale du pergélisol. Cette étude éclaire les possibilités d’utilisation des observations hydrologiques pour contrôler les changements du pergélisol à l’échelle du bassin versant. En outre, ceci ouvre la porte à une recherche pour cerner le mécanisme à l’œuvre derrière les différentes tendances observées et mesurer leur capacité à refléter les conditions actuelles du pergélisol à l’échelle du bassin versant.

Uso de las características del flujo de una corriente para explorar el deshielo del permafrost en cuencas suecas nórdicas

Resumen

El reciente y rápido calentamiento del Ártico conduce al deshielo del permafrost, lo cual influye y modifica los sistemas de flujo de agua subsuperficiales en este tipo de paisaje. Este estudio explora la utilidad de las cuencas como “centinelas del cambio” considerando los datos de la descarga a largo plazo de 17 estaciones en ríos no regulados en el norte de Suecia y analizando tendencias en la descarga mínima anual y en las características de la recesión del flujo. Para las cuencas consideradas, la descarga minima anual tiene una significación creciente (basado en la prueba de Mann Kendall a un nivel de confidencia del 95 %) en nueve de las cuencas y una significación decreciente en una cuenca. Si se consideran los cambios en las características de recesión del flujo, siete cuencas mostraron tendencias significativas consistentes con el deshielo del permafrost mientras que dos cuencas mostraron tendencias significativas en la dirección opuesta. Estos resultados son mecánicamente consistentes con los estudios de modelados genéricos de bases físicas y la configuración geológica, puesto que las cuencas consideradas cubren el límite espacial de la extensión del permafrost. Este estudio ilumina el potencial para usar observaciones hidrológicas con el objeto de monitorear cambios en el permafrost en escala de cuenca. Más aún, esto abre la puerta para la investigación con el fin de aislar los mecanismos detrás de las diferentes tendencias observadas y para calibrar su habilidad para reflejar los condiciones reales del permafrost en la escala de cuenca.

利用河川径流特征探讨瑞典北部流域永久冻土的融化

摘要

北极最近迅速的升温导致了永久冻土的融化,在这样的情形下,影响和改变了地下水流系统。本次研究通过考虑瑞典北部不受监管河流上17个站的长期排放数据来探讨流域作为变化的哨兵的功效,分析年最小排放量和退水特征趋势。对于被探讨的流域,其中九个流域的年最小排放量有显著的增加(基于95%置信水平的Mann Kendall检验结果),一个流域的年最小排放量有显著的减少。考虑退水特征的变化,七个流域表现出显著的与冻土融化一致的趋势,也有两个流域表现出显著的与冻土融化相反的趋势。由于被探讨的流域跨越了冻土范围的空间限制,这些研究结果只是机械的符合一般的基于物理模型的研究结果和地质环境。本次研究阐明了利用水文观测来监测流域尺度永久冻土变化的可能性。而且,这使得我们能够脱离造成这些观察到的趋势背后的机制来进行研究,使得我们能够估计它们反映流域尺度的真实冻土条件的能力。

Uso das características de escoamento de cursos de água para exploração do degelo do permafrost em bacias hidrográficas no norte da Suécia

Resumo

O aquecimento recente e rápido do Ártico conduz ao degelo do permafrost, o que influencia e modifica os sistemas de escoamento de água sub-superficial nestas paisagens. Este estudo explora a utilidade de bacias como “sentinelas da mudança” ao considerar dados de caudal de descarga de longo-prazo de 17 estações localizadas em rios não regularizados no norte da Suécia e analisando as tendências nas descargas mínimas anuais e nas características do escoamento em recessão. Para as bacias consideradas, a descarga mínima anual aumentou significativamente (com base no teste Mann-Kendall com um nível de confiança de 95 %) em nove das bacias e diminuiu significativamente numa bacia. Considerando as variações nas características do escoamento em recessão, sete bacias apresentam tendências significativas consistentes com o degelo do permafrost, enquanto outras duas apresentam tendências significativas em direção oposta. Estes resultados são mecanicamente consistentes com estudos de modelação genéricos baseados na física e com o contexto geológico, uma vez que as bacias consideradas abrangem o limite espacial de extensão do permafrost. Este estudo esclarece a potencialidade da utilização de observações hidrológicas na monitorização de variações do permafrost ao nível da bacia hidrográfica. Para além disso, abre à investigação a possibilidade de isolar os mecanismos por detrás das diferentes tendências observadas e de avaliar a sua capacidade para refletir as condições atuais do permafrost à escala da bacia hidrográfica.

Notes

Acknowledgements

Financial support was provided by the Swedish Geological Survey (SGU) project No. 60-1626/2009. The authors thank Dr. Ype van der Velde for assisting in data processing and analysis related to this work. Further, we thank the guest editor (Dr. Ming-Ko Woo) and two anonymous reviewers for thoughtful comments that greatly improved this work.

References

  1. Åkerman HJ, Johansson M (2008) Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafr Periglac Process. doi: 10.1002/ppp.626
  2. Alexandersson H (2002) Temperature and precipitation in Sweden 1860–2001. Swedish Meteorological and HydrologicalInstitute, Norrköping, SwedenGoogle Scholar
  3. Andrews C, Dick J, Jonasson C, Callaghan T (2011) Assessment of biological and environmental phenology at a landscape level from 30 years of fixed-date repeat photography in northern Sweden. Ambio. doi: 10.1007/s13280-011-0167-z
  4. Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett. doi: L2240110.1029/2009gl039225
  5. Brown J, Ferrians Jr. OJ, Heginbottom JA, Melnikov ES (1998) Circum-Arctic map of permafrost and ground-ice conditions, revised February 2001 edn. NSIDC/WDC for Glaciology, Boulder, CO, Digital mediaGoogle Scholar
  6. Brutsaert W (2005) Hydrology: an Introduction Cambridge University Press, New YorkCrossRefGoogle Scholar
  7. Brutsaert W (2008) Long-term groundwater storage trends estimated from streamflow records: climatic perspective. Water Resour Res. doi: W0240910.1029/2007wr006518
  8. Brutsaert W, Nieber JL (1977) Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour Res. doi: 10.1029/WR013i003p00637
  9. Brutsaert W, Lopez JP (1998) Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 34:233–240CrossRefGoogle Scholar
  10. Callaghan TV, Bergholm F, Christensen TR, Jonasson C, Kokfelt U, Johansson M (2010) A new climate era in the sub-Arctic: accelerating climate changes and multiple impacts. Geophys Res Lett. doi: 10.1029/2009GL042064
  11. Carey SK, Woo MK (2001) Slope runoff processes and flow generation in a subarctic, subalpine catchment. J Hydrol. doi: 10.1016/s0022-1694(01)00478-4
  12. Christiansen HH, Etzelmüller B, Isaksen K, Juliussen H, Farbrot H, Humlum O, Johansson M, Ingeman-Nielsen T, Kristensen L, Hjort J, Holmlund P, Sannel ABK, Sigsgaard C, Akerman HJ, Foged N, Blikra LH, Pernosky MA, Odegård RS (2010) The thermal state of permafrost in the Nordic countries during the International Polar Year 2007–2009. Permafr Periglac Process. doi: 10.1002/ppp.687
  13. Dahlke HE, Lyon SW, Stedinger JR, Rosqvist G, Jansson P (2012) Contrasting trends in hydrologic extremes for two sub-arctic catchments in northern Sweden: does glacier melt matter? Hydrol Earth Syst Sci Discuss 9:1041–1084CrossRefGoogle Scholar
  14. Frampton A, Painter S, Lyon SW, Destouni G (2011) Non-isothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change. J Hydrol. doi: 10.1016/j.jhydrol.2011.04.010
  15. Ge SM, McKenzie J, Voss C, Wu QB (2011) Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long-term air temperature variation. Geophys Res Lett. doi: L1440210.1029/2011gl047911
  16. Jeckel PP (1988) Permafrost and its altitudinal zonation in N. Lapland. Permafrost V International Conference Proceedings, Trondheim, Norway, August 1988Google Scholar
  17. Johansson M (2009) Changing lowland permafrost in northern Sweden: multiple drivers of past and future trends. PhD Thesis, Lund University, SwedenGoogle Scholar
  18. Kirchner JW (2009) Catchments as simple dynamical systems: catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour Res. doi: W0242910.1029/2008wr006912
  19. Klingbjer P, Moberg A (2003) A composite monthly temperature record from Tornedalen in northern Sweden, 1802–2002. Int J Climatol. doi: 10.1002/joc.946
  20. Kokfelt U, Reuss N, Struyf E, Sonesson M, Rundgren M, Skog G, Rosen P, Hammarlund D (2010) Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden. J Paleolimnol. doi: 10.1007/s10933-010-9406-8
  21. Kokfelt U, Rosén P, Schoning K, Christensen TR, Förster J, Karlsson J, Reuss N, Rundgren M, Callaghan TV, Jonasson C, Hammarlund D (2009) Ecosystem responses to increased precipitation and permafrost decay in subarctic Sweden inferred from peat and lake sediments. Glob Change Biol. doi: 10.1111/j.1365-2486.2009.01880.x
  22. Lyon SW, Destouni G (2010) Changes in catchment-scale recession flow properties in response to permafrost thawing in the Yukon River Basin. Int J Climatol. doi: 10.1002/joc.1993
  23. Lyon SW, Destouni G, Giesler R, Humborg C, Morth M, Seibert J, Karlsson J, Troch PA (2009) Estimation of permafrost thawing rates in a sub-Arctic catchment using recession flow analysis. Hydrol Earth Syst Sci 13:595–604CrossRefGoogle Scholar
  24. Lyon SW, Destouni G, Giesler R, Humborg C, Mörth M (2010) The relationship between subsurface hydrology and dissolved carbon fluxes for a sub-Arctic catchment. Hydrol Earth Syst Sci 14:941–950. doi: 10.5194/hess-14-941-2010 CrossRefGoogle Scholar
  25. Malvicini CF, Steenhuis TS, Walter MT, Parlange JY, Walter MF (2005) Evaluation of spring flow in the uplands of Matalom, Leyte, Philippines. Adv Water Resour 28:1083–1090CrossRefGoogle Scholar
  26. Mård-Karlsson J, Lyon SW, Destouni G (2012) Thermokarst lake, hydrological flow and water balance indicators of permafrost change in western Siberia. J Hydrol. doi: 10.1016/j.jhydrol.2012.07.037
  27. McClelland JW, Holmes RM, Peterson BJ, Stieglitz M (2004) Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J Geophys Res Atmos. doi: D1810210.1029/2004jd004583
  28. Mendoza GF, Steenhuis TS, Walter MT, Parlange JY (2003) Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis. J Hydrol 279:57–69CrossRefGoogle Scholar
  29. Oksanen PO (2006) Holocene development of the Vaisjeaggi palsa mire, Finnish Lapland. Boreas. doi: 10.1080/03009480500359103
  30. Olefeldt D, Roulet NT (2012) Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J Geophys Res. doi: 10.1029/2011JG001819
  31. Painter SL (2011) Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications. Comput Geosci. doi: 10.1007/s10596-010-9197-z
  32. Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science. doi: 10.1126/science.1077445
  33. Rawlins MA, Serreze MC, Schroeder R, Zhang X, McDonald KC (2009a) Diagnosis of the record discharge of Arctic-draining Eurasian rivers in 2007. Environ Res Lett. doi: 10.1088/1748-9326/4/4/045011
  34. Rawlins MA, Ye H, Yang D, Shiklomanov A, McDonald KC (2009b) Divergence in seasonal hydrology across northern eurasia: emerging trends and water cycle linkages. Geophys Res Lett. doi: 10.1029/2009JD011747
  35. Rennermalm AK, Wood EF, Troy TJ (2010) Observed changes in pan-Arctic cold-season minimum monthly river discharge. Clim Dyn. doi: 10.1007/s00382-009-0730-5
  36. Shur YL, Jorgenson MT (2007) Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr Periglac Process 18:7–19. doi: 10.1002/ppp.582 CrossRefGoogle Scholar
  37. Rupp DE, Selker SS (2006) Information, artifacts, and noise in dQ/dt–Q recession analysis. Adv Water Resour 29:154–160CrossRefGoogle Scholar
  38. Smith LC, Pavelsky TM, MacDonald GM, Shiklomanov AI, Lammers RB (2007) Rising minimum daily flows in northern Eurasian rivers: a growing influence of groundwater in the high-latitude hydrologic cycle. J Geophys Res Biogeosci. doi: G04s4710.1029/2006jg000327
  39. St Jacques JM, Sauchyn DJ (2009) Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories. Canada Geophys Res Lett. doi: L0140110.1029/2008gl035822
  40. Swedish Geological Survey (2011) SGUs nationella jordartsdatabas [SGU’s national database of Quaternary deposits]. SGU, Uppsala, Sweden, Data fileGoogle Scholar
  41. Troch PA, De Troch FP, Brutsaert W (1993) Effective water table depth to describe initial conditions prior to storm rainfall in humid regions. Water Resour Res 29:427–434CrossRefGoogle Scholar
  42. Vonk JE, Alling V, Rahm L, Mörth C-M, Humborg C, Gustafsson Ö (2012) A centennial record of fluvial organic matter input from the discontinuous permafrost catchment of Lake Torneträsk. J Geophys Res 117:G03018. doi: 10.1029/2011JG001887 CrossRefGoogle Scholar
  43. Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett. doi: L1240210.1029/2007gl030216
  44. Wilson D, Hisdal H, Lawrence D (2010) Has streamflow changed in the Nordic countries? Recent trends and comparisons to hydrological projections. J Hydrol. doi: 10.1016/j.jhydrol.2010.09.010
  45. Woo MK (1986) Permafrost hydrology in North America. Atmos-Ocean 24:201–234CrossRefGoogle Scholar
  46. Yamazaki Y, Kubota J, Ohata T, Vuglinsky V, Mizuyama T (2006) Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountainous region of eastern Siberia. Hydrol Process. doi: 10.1002/hyp.5914
  47. Ye BS, Yang DQ, Zhang ZL, Kane DL (2009) Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. J Geophys Res Atmos. doi: D0710210.1029/2008jd010537
  48. Zecharias YB, Brutsaert W (1988) Recession characteristics of groundwater outflow and baseflow from mountainous watersheds. Water Resour Res 24:1651–1658CrossRefGoogle Scholar
  49. Zuidhoff FS, Kolstrup E (2000) Changes in palsa distribution in relation to climate change in Laivadalen, northern Sweden, especially 1960–1997. Permafr Periglac Process. doi: 10.1002/(sici)1099-1530(200001/03)11:1<55::aid-ppp338>3.0.co;2-t

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ylva Sjöberg
    • 1
    Email author
  • Andrew Frampton
    • 1
    • 2
  • Steve W. Lyon
    • 1
    • 2
  1. 1.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  2. 2.The Bert Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden

Personalised recommendations