Advertisement

Hydrogeology Journal

, Volume 21, Issue 1, pp 5–23 | Cite as

Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China

  • Guodong Cheng
  • Huijun Jin
Paper

Abstract

The areal extent of permafrost in China has been reduced by about 18.6 % during the last 30 years. Due to the combined influences of climate warming and human activities, permafrost has been degrading extensively, with marked spatiotemporal variability. Distribution and thermal regimes of permafrost and seasonal freeze-thaw processes are closely related to groundwater dynamics. Permafrost degradation and changes in frost action have extensively affected cold-regions hydrogeology. Progress on some research programs on groundwater and permafrost in two regions of China are summarized. On the Qinghai-Tibet Plateau and in mountainous northwest China, permafrost is particularly sensitive to climate change, and the permafrost hydrogeologic environment is vulnerable due to the arid climate, lower soil-moisture content, and sparse vegetative coverage, although anthropogenic activities have limited impact. In northeast China, permafrost is thermally more stable due to the moist climate and more organic soils, but the presence or preservation of permafrost is largely dependent on favorable surface coverage. Extensive and increasing human activities in some regions have considerably accelerated the degradation of permafrost, further complicating groundwater dynamics. In summary, permafrost degradation has markedly changed the cold-regions hydrogeology in China, and has led to a series of hydrological, ecological, and environmental problems of wide concern.

Keywords

Permafrost degradation Ecological environment Groundwater dynamics Climate change China 

Pergélisol et eau de nappe sur le Plateau Qinghai-Tibet et dans le Nord-Est de la Chine

Résumé

le domaine d’extension du pergélisol en Chine s’est réduit d’environ 18.6 % durant les 30 dernières années. Dû aux influences combinées du réchauffement climatique et des activités humaines, le pergélisol s’est dégradé de façon extensive, avec une variabilité spatio-temporelle marquée. La distribution, les régimes climatiques du pergélisol et les processus saisonniers de gel-dégel sont étroitement reliés à la dynamique de l’eau souterraine. La dégradation du pergélisol et les changements dans l’action du gel ont affecté de façon extensive l’hydrogéologie des régions froides. Les progrès de programmes de recherche sur l’eau souterraine et le permafrost dans deux régions de Chine sont résumés. Sur le Plateau Qinghai-Tibet et le Nord-Ouest montagneux de la Chine, le pergélisol est particulièrement sensible au changement climatique, et l’environnement hydrogéologique du pergélisol est vulnérable, dû au climat aride, à la teneur plus basse du sol en humidité, et à la couverture végétale éparse, bien que les activités anthropiques aient un impact limité. Au Nord-Est de la Chine, le pergélisol est d’un point de vue thermique plus stable en raison d’un climat humide et de plus de sols organiques, mais la présence ou la préservation de permafrost est largement dépendante de la couverture de surface favorable. Des activités humaines extensives croissantes dans certaines régions ont considérablement accéléré la dégradation du permafrost, compliquant davantage la dynamique de l’eau souterraine. En somme, la dégradation du pergélisol a changé de façon marquée l’hydrogéologie des régions froides en Chine, et a conduit à une série de problèmes hydrologiques, écologiques et environnementaux ayant de larges incidences.

Permafrost y agua subterránea en el Qinghai-Tibet Plateau y en el noreste de China

Resumen

La extensión areal del permafrost en China se redujo cerca del 18.6 % durante los últimos 30 años. Debido a las influencias combinadas de calentamiento del clima y actividades humanas, el permafrost ha sido degradado extensamente, con marcada variabilidad espacio temporal. La distribución y los regimenes termales del permafrost y procesos estacionales de congelamiento – descongelamiento están estrechamente relacionados a la dinámica del agua subterránea. La degradación del permafrost y los cambios en la acción de las heladas ha afectado extensamente a la hidrogeología de las regiones frías. Se resumen los progresos en algunos programas de investigación sobre aguas subterráneas y permafrost en dos regiones de China. En el Qinghai-Tibet Plateau y en las montañas del noroeste de China, el permafrost es particularmente sensible a los cambios climáticos, y ambiente hidrogeológico de permafrost es vulnerable debido al clima árido, baja humedad del suelo, y dispersa cubierta de la vegetación, aunque las actividades antropogénicas han limitado el impacto. En el noreste de China, el permafrost es termalmente más estable debido al clima húmedo y suelos más orgánicos, pero la presencia o preservación de permafrost es en gran parte dependiente de la favorable cubierta de superficie. Las extensas y crecientes actividades humanas en algunas regiones han acelerado considerablemente la degradación del permafrost, complicando aún más la dinámica del agua subterránea. En resumen, la degradación del permafrost ha cambiado marcadamente la hidrogeología de las regiones frías en China, y ha llevado a una serie de problemas hidrológicos, ecológicos y ambientales de gran preocupación.

中国青藏高原和东北地区的多年冻土和地下水

摘要

过去30年来,中国的多年冻土面积已经减少了大约18.6 %。受气候变暖和人类活动的共同影响,多年冻土广泛退化,而且冻土退化呈现出显著的时空变性。多年冻土的分布和热状况以及季节冻结融化过程与地下水动态的关系密切。多年冻土退化和冻融作用变化已经对寒区的水文地质条件产生了深远的影响。本文综述了中国两个地区的与地下水和多年冻土相关的一些研究项目所取得的进展。在青藏高原上和西北山区,多年冻土对气候变化特别敏感,多年冻土区的水文地质环境脆弱。这是因为这里气候干旱、土壤水分少、植被稀疏,尽管人为活动的影响有限。在东北地区,气候较为湿润、有机土较多,多年冻土的发育和保存主要依赖于有利的地表覆被条件,因而多年冻土的热稳定性较强。广泛和日益增加的人类活动在一些地区已经显著加速了多年冻土退化,进一步使得地下水动态复杂化。总之,多年冻土退化已经显著改变了中国的寒区水文地质条件,并导致了一系列被广泛关注的水文、生态和环境问题。

Permafrost e águas subterrâneas no planalto de Qinghai-Tibete e no nordeste da China

Resumo

A extensão da área de permafrost na China foi reduzida em cerca de 18.6 % durante os últimos 30 anos. Devido às influências combinadas do aquecimento climático e das atividades humanas, o permafrost tem-se degradado extensivamente, com marcada variabilidade no espaço e no tempo. A distribuição e os regimes térmicos do permafrost e ainda os processos sazonais de congelamento e descongelamento estão intimamente relacionados com a dinâmica das águas subterrâneas. A degradação do permafrost e as mudanças na ação de congelamento afetaram extensivamente a hidrogeologia das regiões frias. São resumidos os progressos de alguns programas de pesquisa sobre as águas subterrâneas e o permafrost em duas regiões da China. No Planalto de Qinghai-Tibete e no noroeste montanhoso da China, o permafrost é particularmente sensível às mudanças climáticas e o meio ambiente hidrogeológico do permafrost é vulnerável devido ao clima árido, ao menor teor de humidade do solo e à cobertura vegetal esparsa, embora as atividades antrópicas tenham impacto limitado. No nordeste da China, o permafrost é termicamente mais estável devido ao clima húmido e aos solos mais orgânicos, mas a presença ou a preservação do permafrost é largamente dependente duma cobertura de superfície favorável. Em algumas regiões as atividades humanas extensivas e crescentes aceleraram consideravelmente a degradação do permafrost, complicando ainda mais a dinâmica das águas subterrâneas. Em resumo, a degradação do permafrost mudou acentuadamente a hidrogeologia das regiões frias na China e levou a uma série de problemas hidrológicos, ecológicos e ambientais de grande preocupação.

Notes

Acknowledgements

The paper is supported by the Global Change Research Program of China “Cryospheric Change in Northern Hemisphere and Its Impacts and Adaptive Strategies” (Grant No. 2010CB951402). The authors appreciate the indispensable contributions of Professors Shaoling Wang, Dongxin Guo, Xin Li and Lanzhi Lü, and Dr. You’hua Ran and Dr. Dongliang Luo with the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, in providing some of the field and laboratory data, and assistance in data analysis and for figure preparation. Professors Stuart A. Harris and Grant Ferguson and an anonymous reviewer have provided insightful advice for revisions. Ms. Anda Divine did a timely and meticulous editing job. Sue Duncan (Technical Editorial Advisor) provided meticulous and patient assistance in editing the manuscript both in language and technicality. The generous help of these people has significantly improved the manuscript quality and they are sincerely acknowledged.

References

  1. Bense V, Person M (2009) Transient hydrodynamics in inter-cratonic basins during glacial cycles. J Geophys Res 113:F04005. doi: 10.1029/2007JF000969 CrossRefGoogle Scholar
  2. Berezovskaya S, Yang D, Kane DL (2004) Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds. Geophys Res Lett 31:L21502. doi: 10.1029/2004GL021277 CrossRefGoogle Scholar
  3. Bi H (2003) An analysis of the characteristics of groundwater in permafrost regions on the Qinghai-Tibet Plateau and its development (in Chinese). J Glaciol Geocryol 25(S1):215–222Google Scholar
  4. Carey SK, Quinton WL (2005) Evaluation of runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost environment. Hydrol Process 19:95–114CrossRefGoogle Scholar
  5. Carey SK, Woo MK (2000) The role of soil pipes as a slope runoff mechanism, subarctic Yukon, Canada. J Hydrol 233:206–222CrossRefGoogle Scholar
  6. Cheng GD, Wang GX, Wang XD, Shen YP (1998) Changes of ecological environments in the source areas of the Three Rivers (in Chinese). Adv Earth Sci 13(Suppl):24–31Google Scholar
  7. Christiansen HH, Etzelmüller B, Isaksen K, Juliussen H, Farbrot H, Humlum O, Johansson M, Ingeman-Nielsen T, Kristensen L, Hjort J, Holmlund P, Sannel ABK, Sigsgaard C, Åkerman HJ, Foged N, Blikra LH, Pernosky MA, Ødegård RS (2010) The thermal state of permafrost in the Nordic area during the International Polar Year 2007–2009. Permafr Periglac Process 21:156–181. doi: 10.1002/ppp.687 CrossRefGoogle Scholar
  8. Clark ID, Lauriol B, Harwood L, Marschner M (2001) Groundwater contributions to discharge in a permafrost setting, Big Fish River, NWT, Canada. Arct Antarct Alp Res 33(1):62–69CrossRefGoogle Scholar
  9. Dai JB (1982) Characteristics of ground temperature in permafrost areas in the northern part of Great Xing’anling Mountains (in Chinese). J Glaciol Geocryol 4(3):53–63Google Scholar
  10. Fan RH (1979) Hydrological features in permafrost regions on the Qinghai-Tibet Plateau (in Chinese). In: Collection of Papers on Geology of the Qinghai-Tibet Plateau (in Chinese). No. 5, Geology Press, Beijing, pp 58–61Google Scholar
  11. Gao YG, Na JH, Gu H, Sun SJ, Dong J (2007) Characteristic analysis of climate change in Heilongjiang Province during 1961–2003 (in Chinese). J Northeast Forestr Univ 35(5):47–50Google Scholar
  12. Guo PF (1989) Basic types of groundwater in permafrost regions on the Qinghai-Tibet Plateau (in Chinese). In: Proc, 3rd Chinese Conf. on Geocryol. Science Press, Beijing, pp 29–36Google Scholar
  13. Guo DX (1990) Frozen ground in China (in Chinese). Gasu Education Press, Lanzhou, China, pp 1–98Google Scholar
  14. Guo DX, Li ZF (1981) Historical evolution and formation age of permafrost in northeast China since the late Pleistocene (in Chinese). J Glaciol Geocryol 3(4):1–14Google Scholar
  15. Guo DX, Wang SL, Lu GW, Dai JB, Li EY (1981) Division of permafrost regions in Daxiao Hinggan Ling, northeast China (in Chinese). J Glaciol Geocryol 3(3):1–9Google Scholar
  16. Guo DX, Huang YZ, Wang JC, Wang BL, Zeng ZG, He YX, Yang DW, Liu RS (1989) Function of geologic structure in the formation of permafrost conditions in Huola River Basin, North Da Hinggan Ling (in Chinese). J Glaciol Geocryol 11(3):215–222Google Scholar
  17. Han X (1982) Permafrost and hydrogeology in Wurqihan, northeast China. In: Zhou YW, Wu ZW (eds) Proc. 2nd Chinese Conf. on Glaciol Geocryol (in Chinese). Science Press, Beijing, pp 27–30Google Scholar
  18. Hinzman L, Bettez N, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in terrestrial regions of the Arctic. Clim Chang 72:251–298CrossRefGoogle Scholar
  19. Jin HJ, Li SX, Cheng GD, Wang SL, Li X (2000) Permafrost and climatic change in China. Glob Planet Chang 26:387–404CrossRefGoogle Scholar
  20. Jin HJ, Yu QH, Lü LZ, Guo DX, He RX, Yu SP, Sun GY, Li YW (2007) Degradation of permafrost in the Xing′anling Mountains, northeastern China. Permafr Periglac Process 18(2):245–258CrossRefGoogle Scholar
  21. Jin HJ, Wei Z, Wang SL, Yu QH, Lü LZ, Wu QB, Ji YJ (2008) Assessment of frozen-ground conditions for engineering geology conditions along the Qinghai-Tibet highway and railway, China. Eng Geol 101(3–4):96–109CrossRefGoogle Scholar
  22. Jin HJ, He RX, Cheng GD, Wu QB, Wang SL, Lü LZ, Chang XL (2009) Change in frozen ground and eco-environmental impacts in the Source Area of the Yellow River on northeastern Qinghai-Tibet Plateau, China. Environ Res Lett 4(4):045206CrossRefGoogle Scholar
  23. Jin HJ, Luo DL, Wang SL, Lü LZ, Wu JC (2011) Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sci Cold Arid Reg 3(4):281–305Google Scholar
  24. Jin HJ, Cheng GD, Wu QB, Wang SL, Luo DL, Marchenko SS (2012) Degradation of permafrost in the source areas of the Yellow River on the northeastern Qinghai-Tibet Plateau and its ecological and hydro(geo)logical impacts: status, issues, and prospects (in Chinese). In: Ma W, Niu FJ (eds) Research monograph of cold and arid regions engineering and environment: a collection of the papers dedicated to the 70th Birthday of Academician Guodong Cheng. Lanzhou University Press, Lanzhou, pp 229–239Google Scholar
  25. Li SD, Cheng GD, Zhou YW, Wang SL, Li ZF, Wu ZW, Wang YX, Lin JF, Liu JM (1996) Map of permafrost on the Qinghai-Tibet Plateau (in Chinese). Gansu Culture Press, LanzhouGoogle Scholar
  26. Li Q, Wang WW, Chen WY (2004) Report for exploratory research for the occurrence of natural gas hydrate in northern Heilongjiang Province, China (in Chinese). Heilongjiang Geological Survey, Harbin, China, pp 5–67Google Scholar
  27. Li Q, Wang WW, Chen WY (2010) Features and genesis of massive ice body in the Yueya Lake in the Hola River Basin coalmine, Mo’he County, Heilongjiang, China (in Chinese). Jilin Geol 29(2):120–126Google Scholar
  28. Li X, Cheng GD, Jin HJ, Kang ES, Che T, Jin R, Wu LZ, Nan ZT, Wang J, Shen YP (2008) Cryospheric change in China. Glob Planet Chang 62:210–218CrossRefGoogle Scholar
  29. Li X, Ran YH, Nan ZT, Jin HJ (2012) A frozen ground distribution map of China made by integrating existing permafrost maps and modeling results (in Chinese). In: Ma W, Niu FJ (eds) Research monograph of cold and arid regions engineering and environment: a collection of the papers dedicated to the 70th Birthday of Academician Guodong Cheng. Lanzhou University Press, Lanzhou, pp 229–239Google Scholar
  30. Liang LH, Zhou YW, Wang JC, Gao XW (1991) Changes of the permafrost environment in the Great Xing’anling Mountains after a disastrous forest fire (in Chinese). J Glaciol Geocryol 13(1):17–25Google Scholar
  31. Lin FT, Tu G (1981) Permafrost hydrogeology in the Hola River Basin in the Da Xing’anling Mountains, Northeast China (in Chinese). In: Proc. 3rd Chinese Conf. on Geocryol. Science Press, Beijing, pp 22–28Google Scholar
  32. Lu CX, Xie GD, Cheng SK, Li SK (2004) The Qinghai-Tibet Plateau as a water tower (in Chinese). J Mt Sci 22(4):428–432Google Scholar
  33. Luo DL, Jin HJ, Lin L, He RX, Yang SZ, Chang XL (2012) Progress in permafrost temperature and thickness in the source area of the Huanghe River (in Chinese). Sci Geogr Sin 32(7):898–904Google Scholar
  34. McClelland JW, Holmes RM, Peterson BJ (2004) Increasing river discharge in Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J Geophys Res 109:D181–D182. doi: 10.1029/2004JD004583 CrossRefGoogle Scholar
  35. Michel FA, van Everdingen RO (1994) Changes in hydrogeologic regimes in permafrost regions due to climatic change. Permafr Periglac Process 5:191–195CrossRefGoogle Scholar
  36. Muskett RR, Romanovsky VE (2009) Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements. Environ Res Lett 4:045009CrossRefGoogle Scholar
  37. Niu YF (1999) Study of the problems of ecological environments on the Qinghai-Tibet Plateau (in Chinese). Adv Geogr Sci 18(2):163–171Google Scholar
  38. Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. J Geophys Res 112:F02S02CrossRefGoogle Scholar
  39. Pan HS, Zhang GH (2003) Spatiotemporal variability of climate warming in Heilongjiang Province, China (in Chinese). Heilongjiang Meteorol 3:3–7Google Scholar
  40. Peng XM, Wu QB, Tian MZ (2003) Impacts of the lowering groundwater table in the source areas of the Yellow River on ecological environments (in Chinese). J Glaciol Geocryol 25(6):667–670Google Scholar
  41. Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173CrossRefGoogle Scholar
  42. Pu JC, Yao TD, Wang NL, Su Z, Shen YP (2004) Advances and retreats of glaciers on the Qinghai-Tibet Plateau (in Chinese). J Glaciol Geocryol 25(6):517–522Google Scholar
  43. Qiu GQ (1982) Distributive features and formation conditions of talik and permafrost in the Tuotuo’he River basin on the Qinghai-Tibet Plateau (in Chinese). Geographical Society of China (ed) Collective Papers of Chin Conf Glaciol Geocryol, vol Geocryol. Science Press, Beijing, pp 19–26Google Scholar
  44. Qiu GQ, Cheng GD (1995) Permafrost in China: past and present. Permafr Periglac Process 6(1):3–14. doi: 10.1002/ppp.3430060103 CrossRefGoogle Scholar
  45. Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, Vasiliev AA (2010) Thermal state of permafrost in Russia. Permafr Periglac Process 21:136–155. doi: 10.1002/ppp.683 CrossRefGoogle Scholar
  46. Serreze MC, Walsh JE, Chapin FS III, Osterkamp T, Dyurgerov M, Romanovsky VE, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Chang 46:159–207CrossRefGoogle Scholar
  47. Shi YF (ed) (2003) Assessment on climate change from warm and dry to warm and moist in northwest China (in Chinese). Meteorology Press, Beijing, pp 1–3Google Scholar
  48. Shi YF, Mi DS (1988) Map of snow, ice and frozen ground in China (1:4,000,000) (in Chinese and English). SinMaps, Beijing, map plus 38 pp information bookletGoogle Scholar
  49. Smith SL, Romanovsky VE, Lewkowicz AG, Burn CR, Allard M, Clow GD, Yoshikawa K, Throop J (2010) Thermal state of permafrost in North America: a contribution to the International Polar Year. Permafr Periglac Process 21:117–135CrossRefGoogle Scholar
  50. Wang BL (1990) Massive ground ice within bedrocks (in Chinese). J Glaciol Geocryol 12(3):209–218Google Scholar
  51. Wang BL, Lin FT (1987) Groundwater in permafrost environment in the northern Da Xing’anling Mountains: a case study in the Hola River Basin (in Chinese). Hydrogeol Eng Geol 5:5–9Google Scholar
  52. Wang BL, Zhou YW, Guo DX (1988) Effects of permafrost on groundwater in Huola Basin, northern Da Xing’anling Mountains (in Chinese). J Glaciol Geocryol 10(2):143–150Google Scholar
  53. Wang GX, Shen Y, Cheng GD (2000) Changes of ecological environments in the source areas of the Yellow River (in Chinese). J Glaciol Geocryol 22(3):200–204Google Scholar
  54. Wang JY, Huang SP (1990) Data assimilation on geothermal fluxes on the land territories of China (in Chinese). Seism Geol 12(4):351–366Google Scholar
  55. Wang JY, Huang SP (1996) Geothermics in China. Seismics, Beijing, pp 1–299Google Scholar
  56. Wang JC, Li SD (1983) Analysis on the thermal regimes in the vicinity of the permafrost base along the Qinghai-Tibet Highway. In: Collection of papers on permafrost on the Qinghai-Tibet Plateau (in Chinese). Science Press, Beijing, pp 38–43Google Scholar
  57. Wang JC, Wang SL, Qiu GQ (1979) Permafrost along the Qinghai-Tibet Highway (in Chinese). Act Geogr Sin 34(1):18–32Google Scholar
  58. Wang SL (1990a) Discussions on the en-permafrost water (in Chinese). Hydrogeol Eng Geol 19(1):46–47Google Scholar
  59. Wang SL (1990b) Paleo-sinters on the Qinghai-Tibet Plateau and their implications (in Chinese). Hydrogeol Eng Geol 19(4):29–31Google Scholar
  60. Wang SL (1998) Discussions on permafrost degradation and changes in permafrost environments on the Qinghai-Tibet Plateau (in Chinese). Adv Ear Sci 13(Suppl):65–73Google Scholar
  61. Wang SL, Li ZF, Liu JS, Liang ZX (1990) Study on the tritium (T) isotopes in the surface and ground waters on eastern Qinghai-Tibet Plateau (in Chinese). Environ Sci 11(1):24–27Google Scholar
  62. Wang SL, Bian CY, Wang J (1994) Features of hydrogeology in permafrost regions on the Qinghai-Tibet Plateau (in Chinese). Qinghai Geol 1:40–47Google Scholar
  63. Wang SL, Jin HJ, Li SX, Zhao L (2000) Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts. Permafr Periglac Process 11(1):43–53CrossRefGoogle Scholar
  64. Wang T (ed) (2006) 1:4,000,000 map of glaciers, frozen ground and deserts in China, and illustrations (in Chinese and English). Science Press, Beijing, China, 1–12Google Scholar
  65. Wang XF (1996) Seasonally thawed layer and its stripping in Gulian River openwork coalmine (in Chinese). J Glaciol Geocryol 18(3):279–283Google Scholar
  66. White D, Hinzman LD, Alessa L, Cassano J, Chambers M, Falkner K, Francis J, Gutowski WJ Jr, Holland M, Holmes RM, Huntington H, Kane DL, Kliskey A, Lee C, McClelland J, Peterson B, Rupp TS, Straneo F, Steele M, Woodgate R, Yang D, Yoshikawa K, Zhang T (2007) The Arctic freshwater system: changes and impacts. J Geophys Res 112:G04S54. doi: 10.1029/2006JG000353 CrossRefGoogle Scholar
  67. Woo MK (1986) Permafrost hydrology in North America. Atmos-Ocean 24(3):201–234CrossRefGoogle Scholar
  68. Woo MK (2000) McMaster River and Arctic hydrology. Phys Geogr 21:466–484Google Scholar
  69. Woo MK, Kane DL, Carey SK, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac Process 19:237–254CrossRefGoogle Scholar
  70. Xie GD, Lu CX, Leng YF, Zheng D, Li SC (2003) Assessment of the values of the ecological assets of the Qinghai-Tibet Plateau (in Chinese). J Nat Resour 18(2):189–196Google Scholar
  71. Yang D, Ye B, Kane DL (2004a) Streamflow changes over Siberian Yenisei River basin. J Hydrol 296:59–80CrossRefGoogle Scholar
  72. Yang D, Ye B, Shiklomanov A (2004b) Discharge characteristics and changes over the Ob River watershed in Siberia. J Hydrometeorol 5:595–610CrossRefGoogle Scholar
  73. Ye B, Yang D, Kane DL (2003) Changes in Lena River streamflow hydrology: human impacts versus natural variations. Water Resour Res 39:1200CrossRefGoogle Scholar
  74. Yuan ZM (1988) Study on the isotope hydrogeology in Erlintu in the Ordos basin, North China (in Chinese). Hydrogeol Eng Geol 5:30–33Google Scholar
  75. Yuan H (1989) Degrading permafrost in the Da Xing’anling Mountains (in Chinese). In: Proc. 3rd Chinese Conf on Geocryol. Science Press, Beijing, pp 54–58Google Scholar
  76. Zhang JZ (ed.) (1990) Hydrology of Qinghai Province (in Chinese). Geodesy Press, Beijing, China, pp 8–10Google Scholar
  77. Zhang SQ, Wang YG, Zhao YZ, Huang Y, Li YG, Shi WD, Shang XG (2004) Degradation of permafrost in the source areas of the Yellow River and its environmental implications (in Chinese). J Glaciol Geocryol 26(1):1–6Google Scholar
  78. Zhang SQ, Li Y, Wang YG, Lü BC, Zhuang YC, Li YJ (2009) Lowering of regional groundwater table in the source areas of the Yellow River and its ecological environmental problems (in Chinese). Hydrogeol Eng Geol 6:109–113Google Scholar
  79. Zhang X, He J, Zhang J, Polyakov I, Gerdes R, Inoue J, Wu P (2012) Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature (Clim Chang). doi: 10.1038/NCLIMATE1631
  80. Zhang ZG (1987) Preliminary analysis on the age, water flow systems of groundwater in Quaternary deposits and genesis of saline water (in Chinese). Hydrogeol Eng Geol 4:1–7Google Scholar
  81. Zhao L, Wu QB, Marchenko SS, Sharkhuu N (2010a) Thermal state of permafrost and active layer in central Asia during the International Polar Year. Permafr Periglac Process 21:198–207. doi: 10.1002/ppp.688 CrossRefGoogle Scholar
  82. Zhao L, Ding YJ, Liu GY, Wang SL, Jin HJ (2010b) Estimates and assessment on the storage of ground ice in permafrost on the Qinghai-Tibet Plateau (in Chinese). J Glaciol Geocryol 32(1):1–9Google Scholar
  83. Zhao Q, Xu YC, Kou LW, Wang XB (2001) Types and distributive features of groundwater in permafrost environments in the Hola River Basin (in Chinese). J Heilongjiang Hydraul Eng Coll 28(3):85–88Google Scholar
  84. Zheng Q (1989) Groundwater in permafrost regions in the Da Xing’anling Mountains in northeast China (in Chinese). In: Proc, 3rd Chinese Conf on Geocryol. Science Press, Beijing, pp 16–21Google Scholar
  85. Zhou YW, Guo DX (1982) Principal characteristics of permafrost in China (in Chinese). J Glaciol Geocryol 4(1):1–19Google Scholar
  86. Zhou YW, Qiu GQ, Guo DX, Li SD (2000) Frozen ground in China (in Chinese). Science Press, Beijing, pp 128–136Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Frozen Soils Engineering, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations