Advertisement

Hydrogeology Journal

, Volume 21, Issue 1, pp 53–66 | Cite as

Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges

  • A. M. Ireson
  • G. van der Kamp
  • G. Ferguson
  • U. Nachshon
  • H. S. Wheater
Paper

Abstract

The groundwater regime in seasonally frozen regions of the world exhibits distinct behavior. This paper presents an overview of flow and associated heat and solute transport processes in the subsurface, from the soil/vadose zone, through groundwater recharge to groundwater discharge processes in these areas. Theoretical developments, field studies and model development are considered. An illustrative conceptual model of the system is presented. From a groundwater perspective, the dominant effect is the extent of hydraulic isolation between the water above and that below the near-surface frozen zone. The spatial and temporal occurrences of this isolation are seasonally variable and may also be modified under a future changing climate. A good qualitative conceptual understanding of the system has been developed over numerous decades of study. A major gap is the inability to effectively monitor processes in the field, particularly unfrozen water content during freezing conditions. Modeling of field-scale behavior represents a major challenge, even while physically based models continue to improve. It is suggested that progress can be made by combining well-designed field experiments with modeling studies. A major motivation for improving quantification of these processes derives from the need to better predict the impacts of a future changing climate.

Keywords

Seasonally cold regions Groundwater recharge Groundwater/surface-water relations Salinization Canada 

Processus hydrogéologiques aux latitudes septentrionales gelées de façon saisonnière : compréhension, lacunes et défis

Résumé

Le régime de l’eau souterraine dans les régions gelées de façon saisonnière fait apparaître différents comportements. Cet article présente une vue d’ensemble du flux et des processus de transport de chaleur et de solutés en sub-surface, depuis la zone sol/vadose, à travers des processus de recharge-décharge dans ces zones. Des développements théoriques, études de terrain et développement de modèles sont considérés. Un modèle conceptuel est présenté pour illustrer. Si l’on considère l’eau de nappe, l’effet dominant est l’importance de l’isolation hydraulique entre l’eau sur et l’eau sous la sub-surface gelée. Dans le temps et dans l’espace cette isolation varie avec les saisons et pourra aussi être modifiée par un futur changement du climat. Une bonne compréhension conceptuelle qualitative du système a été développée durant de nombreuses décades d’étude. Une lacune majeure est l’impossibilité de contrôler effectivement le processus sur le terrain, particulièrement la teneur en eau libre durant les périodes de gel. La modélisation du comportement à l’échelle du terrain représente un défi majeur, même si les modèles à base physique continuent de s’améliorer. On suggère que des progrès peuvent être faits en combinant des expériences de terrain bien conçues et des études de modélisation. Une motivation majeure pour améliorer la quantification de ces processus dérive du besoin de mieux prévoir les impacts d’un futur changement climatique.

Procesos hidrogeológicos en latitudes septentrionales estacionalmente congeladas: comprensión, dificultades y desafíos

Resumen

El régimen de agua subterránea en regiones estacionalmente congeladas del mundo exhibe comportamientos distintivos. Este trabajo presenta un panorama del flujo y los procesos asociados de transporte de calor y soluto en el subsuelo, a partir de la zona vadosa / suelo, a través de los procesos de recarga a la descarga del agua subterránea en estas áreas. Se consideran los desarrollos teóricos, los estudios de campo y los modelos desarrollados. Se presenta un modelo conceptual ilustrativo del sistema. Desde la perspectiva del agua subterránea, el efecto dominante es el grado de aislamiento entre el agua por encima y por debajo de la zona congelada próxima a la superficie. La presencia espacial y temporal de este aislamiento es variable estacionalmente y pueden también ser modificadas bajo un futuro cambio climático. Un buen entendimiento cualitativo conceptual del sistema se desarrolló durante numerosas décadas de estudio. Una dificultad mayor es la incapacidad para monitorear efectivamente los procesos en el campo, particularmente el contenido de agua no congelada durante las condiciones de congelamiento. El comportamiento modelado a escala de campo representa un desafío mayor, aun cuando los modelos de bases físicas pueden seguir mejorando. Se sugiere que se puede avanzar mediante la combinación de experimentos de campo bien diseñados con estudios de modelos. Una motivación mayor para mejorar la cuantificación de estos procesos deriva de la necesidad de predecir mejor los impactos de un futuro cambio climático.

北纬季节性冻土区的水文地质过程:认识,不足和挑战

摘要

世界上季节性冻土区的地下水动态呈现出不同的行为特征。本文对这些地区的地面以下,从土壤/渗流区通过地下水的补给到地下水的排泄过程的水流运动和相关的热、溶质运移过程作了一个概述。本文综合考虑了理论的发展,场地的研究和模型的发展。另外,文中还展示了一个解释说明性的系统概念模型。从地下水的角度来说,占优势的效应是近地表的冻土区上、下的地下水间的水力隔绝程度。时间、空间上这种隔绝的存在是随着季节变化的,可以在未来变化的气候下进行模拟。通过几十年的研究,对季节性冻土系统的较好的定性概念性认识已经建立起来了。一个主要的不足在于无法有效地监测场地的过程,特别是在严寒条件下不冻水的成分。甚至当基于物理的模型在继续向前发展时,场地尺度上的行为模拟仍是一个主要的挑战。文中指出,可以通过将设计精良的场地试验与模型研究相结合来获得突破。提高这些过程的定量化的主要动机来源于更好地对未来气候变化影响的预测的需求。

Processos hidrogeológicos em latitudes setentrionais sazonalmente geladas: compreensão, lacunas e desafios

Resumo

O regime de águas subterrâneas em regiões do mundo sazonalmente geladas exibe comportamento distinto. Este artigo apresenta uma visão geral dos processos subsuperficiais de fluxo e de transporte de calor e de soluto associados, desde o solo/zona vadosa, através dos processos de recarga de águas subterrâneas, até à sua descarga. São considerados desenvolvimentos teóricos, estudos de campo e desenvolvimento de modelos. É apresentado um modelo concetual ilustrativo do sistema. Da perspetiva das águas subterrâneas, o efeito dominante é a extensão do isolamento hidráulico entre as águas acima e abaixo da zona gelada próxima da superfície. As ocorrências espaciais e temporais destes isolamentos são variáveis sazonalmente e podem também ser modificadas num clima futuro em mudança. Ao longo de numerosas décadas de estudo, desenvolveu-se uma boa compreensão concetual qualitativa do sistema. Uma grande lacuna é a incapacidade de monitorizar eficazmente os processos no terreno, particularmente o teor de água não solidificada durante condições de congelação. A modelação do comportamento à escala do terreno representa um desafio maior, mesmo enquanto os modelos físicos continuam a melhorar. Sugere-se que se pode conseguir uma boa progressão combinando experiências de terreno bem concebidas com estudos de modelação. Uma motivação principal para melhorar a quantificação destes processos deriva da necessidade de prever melhor os impactes de alterações climáticas futuras.

Notes

Acknowledgements

Data used in this study came from the Saksatchewan Watershed Authority and from Fluxnet Canada. Support for this study was provided by the Global Institute for Water Security at the University of Saskatchewan. We thank Heather Wilson for preparing a map of the field site locations.

References

  1. Aksenov VI, Bubnov NG, Klinova GI, Iospa AV, Gevorkyan SG (2011) Water phase transformations in frozen soil under the effect of cryopegs. Water Resour 38(7):934–943CrossRefGoogle Scholar
  2. Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968CrossRefGoogle Scholar
  3. Arndt JL, Richardson JL (1985) Winter effects on the salt balance of saline ponds in North Dakota. In: Proc. North Dakota Acad Sci 77 Annual Meeting, vol 85, Grand Forks, ND, April 1985, pp 36–53Google Scholar
  4. Arndt JL, Richardson JL (1989) Geochemistry of hydric soil salinity in a recharge-throughflow-discharge prairie-pothole wetland system. Soil Sci Soc Am J 53:848–855CrossRefGoogle Scholar
  5. Baker GC, Osterkamp TE (1989) Salt redistribution during freezing of saline sand columns at constant rates. Water Resour Res 25(8):1825–1831CrossRefGoogle Scholar
  6. Barr AG, van der Kamp G, Black TA, McCaughey JH, Nesic Z (2012) Energy balance closure at the BERMS flux towers in relation to the water balance of the White Gull Creek watershed 1999–2009. Agric For Meteorol 153:3–13CrossRefGoogle Scholar
  7. Barrow NJ (1992) A brief discussion on the effect of temperature on the reaction of inorganic ions with soil. J Soil Sci 43:37–45CrossRefGoogle Scholar
  8. Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36(22):2–7. Available at: http://www.agu.org/pubs/crossref/2009/2009GL039225.shtml. Accessed 12 March 2012CrossRefGoogle Scholar
  9. Berthold S, Bentley L, Hayashi M (2004) Integrated hydrogeological and geophysical study of depression-focused groundwater recharge in the Canadian prairies. Water Resour Res 40(6):W06505CrossRefGoogle Scholar
  10. Cherkauer KA, Lettenmaier DP (1999) Hydrologic effects of frozen soils in the upper Mississippi River basin. J Geophys Res 104(D16):19599–19610. Available at: http://www.agu.org/pubs/crossref/1999/1999JD900337.shtml. Accessed October 2012CrossRefGoogle Scholar
  11. Chuvilin EM (1999) Migration of ions of chemical elements in freezing and frozen soils. Polar Rec 35(192):59–66CrossRefGoogle Scholar
  12. Constantz J, Stonestrom DA (2003) Heat as a Tracer of water movement near streams. In: Stonestrom DA, Constantz J (eds) Heat as a tool for studying the movement of ground water near streams. US Geol Surv Circ 1260, pp 1–6Google Scholar
  13. Dall’Amico M, Endrizzi S, Gruber S, Rigon R (2011) A robust and energy-conserving model of freezing variably-saturated soil. Cryosphere 5(2):469–484CrossRefGoogle Scholar
  14. Ferguson G, Beltrami H, Woodbury AD (2006) Perturbation of ground surface temperature reconstructions by groundwater flow? Geophys Res Lett 33(13):L13708CrossRefGoogle Scholar
  15. Flerchinger GN, Saxon KE (1989) Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development. Trans ASAE 32(2):565–570Google Scholar
  16. Ge X, Wang X (2009) Estimation of freezing point depression, boiling point elevation, and vaporization enthalpies of electrolyte solutions. Ind Eng Chem Res 48(4):2229–2235CrossRefGoogle Scholar
  17. Ge S, McKenzie J, Voss C, Wu Q (2011) Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long-term air temperature variation. Geophys Res Lett 38(14):1–6CrossRefGoogle Scholar
  18. González-Rouco JF, Beltrami H, Zorita E, Stevens MB (2009) Borehole climatology: a discussion based on contributions from climate modeling. Clim Past 5:97–127CrossRefGoogle Scholar
  19. Granger RJ, Gray DM, Dyck GE (1984) Snowmelt infiltration to frozen prairie soils. Can J Earth Sci 21(6):669–677CrossRefGoogle Scholar
  20. Gray DM, Granger RJ (1986) In situ measurements of moisture and salt movement in freezing soils. Can J Earth Sci 23:696–704CrossRefGoogle Scholar
  21. Gray DM, Male DH (1981) Handbook of snow: principles, processes, management and use, Pergamon, Oxford, UKGoogle Scholar
  22. Gray DM, Landine PG, Granger RJ (1985) Simulating infiltration into frozen prairie soils in streamflow models. Can J Earth Sci 22(3):464–472Google Scholar
  23. Hansson K, Simunek J, Mizoguchi M, Lundi LC, van Genuchten MT (2004) Water flow and heat transport in frozen soil: numerical solution. Vadose Zone J 3:693–704Google Scholar
  24. Harlan RL (1973) Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour Res 9(5):1314CrossRefGoogle Scholar
  25. Hassan Y, Halim AOAE, Razaqpur AG, Bekheet W, Farha M (2002) Effects of runway deicer on pavement materials and mixes: comparison with road salt. J Transp Eng 128(4):385–391CrossRefGoogle Scholar
  26. Hayashi M, van der Kamp G, Schmidt R (2003) Focused infiltration of snowmelt water in partially frozen soil under small depressions. J Hydrol 270(3–4):214–229CrossRefGoogle Scholar
  27. Hendry MJ, Wassenaar LI (2004) Transport and geochemical controls on the distribution of solutes and stable isotopes in a thick clay-rich till aquitard, Canada. Isot Environ Heal Stud 40(1):3–19CrossRefGoogle Scholar
  28. Henry KS (2000) A review of thermodynamics of frost heave. ERDC/CRREL TR-00-16, Cold Regions Research and Engineering Laboratory, US Army Corps of Engineers, Washington, DCGoogle Scholar
  29. Hillel D (1998) Environmental soil physics, 2nd edn. Academic, San DiegoGoogle Scholar
  30. Iwata Y, Hayashi M, Suzuki S, Hirota H, Hasegawa S (2010) Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: a paired plot experiment. Water Resour Res 46(9):W09504CrossRefGoogle Scholar
  31. Jafarov EE, Marchenko SS, Romanovsky VE (2012) Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset. Cryosphere Discuss 6(1):89–124CrossRefGoogle Scholar
  32. Jenkins B, Donald H (2008) Chemical thermodynamics at a glance. Wiley, Chichester, UKGoogle Scholar
  33. Kane DL, Hinkel KM, Goering DJ, Hinzman LD, Outcalt SI (2001) Non-conductive heat transfer associated with frozen soils. Glob Planet Chang 29(3–4):275–292CrossRefGoogle Scholar
  34. Keller CK, van der Kamp G, Cherry JA (1989) A multiscale study of the permeability of a thick clayey till. Water Resour Res 25(11):2299–2317CrossRefGoogle Scholar
  35. Kelln C, Barbour L, Qualizza C (2007) Preferential flow in a reclamation cover : hydrological and geochemical response. J Geotech Geoenviron Eng. 133(10):1277–1289Google Scholar
  36. Mahar LJ, Wilson RN, Vinson TS (1983) Physical and numerical modeling of uniaxial freezing in a saline gravel. In: Proceedings of the Fourth International Conference on Permafrost. National Academy of Sciences, Washington, DC, pp 773–778Google Scholar
  37. Marin S, van der Kamp G, Pietroniro A, Davison B, Toth B (2010) Use of geological weighing lysimeters to calibrate a distributed hydrological model for the simulation of land–atmosphere moisture exchange. J Hydrol 383(3–4):179–185CrossRefGoogle Scholar
  38. Matsumoto M, Saito S, Ohmine I (2002) Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416:409–413CrossRefGoogle Scholar
  39. McKenzie JM, Voss CI, Siegel DI (2007) Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv Water Resour 30(4):966–983CrossRefGoogle Scholar
  40. Meyboom P (1961) Estimating ground-water recharge from stream hydrographs. J Geophys Res 66(4):1203–1214CrossRefGoogle Scholar
  41. Miller RD (1980) Freezing phenomena in soils. In: Hillel D (ed) Applications of soil physics. Academic, New York, pp 254–299Google Scholar
  42. Moller N (1988) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na–Ca–CI–S04–H20 system, to high temperature and concentration. Geochim Cosmochim Acta 52(4):821–837CrossRefGoogle Scholar
  43. Moore RD, Hamilton AS, Scibek J (2002) Winter streamflow variability, Yukon Territory, Canada. Hydrol Process 16(4):763–778CrossRefGoogle Scholar
  44. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522CrossRefGoogle Scholar
  45. Nicolsky DJ, Romanovsky VE, Tipenko GS (2007) Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems. Cryosphere 1(1):41–58CrossRefGoogle Scholar
  46. Pabalan RT, Pitzer KS (1987) Thermodynamics of NaOH(aq) in hydrothermal solutions. Geochim Cosmochim Acta 51(4):829–837CrossRefGoogle Scholar
  47. Padilla F, Villeneuve JP (1989) Modeling the movement of water, heat and solutes in frost-susceptible soils. Nordicana 54:43–49Google Scholar
  48. Power G, Brown RS, Imhof JG (1999) Groundwater and fish: insights from northern North America. Hydrol Process 13(3):401–422CrossRefGoogle Scholar
  49. Prowse TD, Beltaos S (2002) Climatic control of river-ice hydrology: a review. Hydrol Process 16(4):805–822CrossRefGoogle Scholar
  50. Remenda VH, van der Kamp G, Cherry JA (1996) Use of vertical profiles of Oxygen18 to constrain estimates of hydraulic conductivity in a thick, unfractured aquitard. J Water Resour Res 32(10):2979–2987CrossRefGoogle Scholar
  51. Rosenberry DO, Winter TC (1997) Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota. J Hydrol 191(1–4):266–289CrossRefGoogle Scholar
  52. Roth K, Boike J (2001) Quantifying the thermal dynamics of a permafrost site near Ny-Alesun, Svalbard. Water Resour Res 37(12):2901–2914CrossRefGoogle Scholar
  53. Roth K, Schulin R, Fluhler H, Attinger W (1990) Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour Res 26(10):2267–2273Google Scholar
  54. Saar MO (2011) Review: geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields. Hydrogeol J 19(1):31–52CrossRefGoogle Scholar
  55. Saskatchewan Watershed Authority (2012) Saskatchewan observation well network. http://www.swa.ca/WaterManagement/Groundwater.asp?type=ObservationWells. Accessed 9 September 2012
  56. Schofield RK (1935) The pF of the water in soil. In: Third Int. Congress on Soil Science, vols 2–3, Oxford, UK, August 1935, pp 37–48 and pp 182–186Google Scholar
  57. Smerdon JE, Pollack HN, Enz JW, Lewis MJ (2003) Conduction-dominated heat transport of the annual temperature signal in soil. J Geophys Res 108(B9):2431CrossRefGoogle Scholar
  58. Smerdon JE, Pollack HN, Cermak V, Enz JW, Kresl M, Safanda J (2006) Daily, seasonal, and annual relationships between air and subsurface temperatures. J Geophys Res 111:D07101CrossRefGoogle Scholar
  59. Smith LC, Pavelsky TM, MacDonald GM, Shiklomanov AI, Lammers RB (2007) Rising minimum daily flows in northern Eurasian rivers: a growing influence of groundwater in the high-latitude hydrologic cycle. J Geophys Res 112(G4). Available at: http://www.agu.org/pubs/crossref/2007/2006JG000327.shtml. Accessed 21 September 2011
  60. Sophocleous M (1979) Analysis of water and heat flow in unsaturated-saturated porous media. Water Resour Res 15(5):1195–1206CrossRefGoogle Scholar
  61. Spaans EJA, Baker JM (1996) The soil freezing characteristic: its measurement and similarity to the soil moisture characteristic. Soil Sci Soc Am J 60:13–19CrossRefGoogle Scholar
  62. St. Jacques JM, Sauchyn DJ (2009) Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys Res Lett 36(1):1–6CrossRefGoogle Scholar
  63. Stähli M (2005) 71: Freezing and thawing phenomena in soils. In: Anderson MG (ed) Encyclopedia of the Hydrological Sciences. Wiley, Chichester, UK, pp 1–8Google Scholar
  64. Stähli M, Stadler D (1997) Measurement of water and solute dynamics in freezing soil columns with time domain reflectometry. J Hydrol 195:352–369CrossRefGoogle Scholar
  65. Suarez DL (2005) Chemistry of salt-affected soils. In: Tabatabai MA, Sparks DL (eds) Chemical processes in soils. Special Publ. Book Series, Soil Sci. Soc. Am, Madison, WI, pp 689–705Google Scholar
  66. Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165:349–370CrossRefGoogle Scholar
  67. Thompson TG, Nelson HK (1956) Concentration of brines and deposition of salts from sea water under frigid conditions. Am J Sci 254:227–238CrossRefGoogle Scholar
  68. Tiessen KHD, Elliott JA, Yarotski J, Lobb DA, Flaten DN, Glozier NE (2010) Conventional and conservation tillage: influence on seasonal runoff, sediment, and nutrient losses in the Canadian prairies. J Environ Qual 38:964–980CrossRefGoogle Scholar
  69. Timpson ME, Richardson JL, Keller LD, McCarthy GJ (1986) Evaporative mineralogy associated with saline seeps in south western North Dakota. Soil Sci Soc Am J 50:490–493CrossRefGoogle Scholar
  70. Todd AK, Buttle JM, Taylor CH (2006) Hydrologic dynamics and linkages in a wetland-dominated basin. J Hydrol 319(1–4):15–35CrossRefGoogle Scholar
  71. Tóth J (2005) The Canadian school of hydrogeology: history and legacy. Ground Water 43(4):640–644CrossRefGoogle Scholar
  72. van der Kamp G, Hayashi M (1998) The groundwater recharge function of small wetlands in the semi-arid northern prairies. Great Plains Res 8:39–56Google Scholar
  73. van der Kamp G, Hayashi M (2008) Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol J 17(1):203–214CrossRefGoogle Scholar
  74. van der Kamp G, Maathuis H (1991) Annual fluctuations of groundwater levels as result of loading by surface moisture. J Hydrol 127(1–4):137–152CrossRefGoogle Scholar
  75. van der Kamp G, Hayashi M, Gallen D (2003) Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies. Hydrol Process 17(3):559–575CrossRefGoogle Scholar
  76. Vrbka L, Jungwirth P (2007) Molecular dynamics simulations of freezing of water and salt solutions. J Mol Liq 134(1–3):64–70CrossRefGoogle Scholar
  77. Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon river basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34(12):1-6 Available at: http://www.agu.org/pubs/crossref/2007/2007GL030216.shtml. Accessed October 2012CrossRefGoogle Scholar
  78. Watanabe K, Flury M (2008) Capillary bundle model of hydraulic conductivity for frozen soil. Water Resour Res 44(12):W12402CrossRefGoogle Scholar
  79. Watanabe K, Wake T (2009) Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Reg Sci Technol 59(1):34–41CrossRefGoogle Scholar
  80. Williams RBG, Robinson DA (2001) Experimental frost weathering of sandstone by various combinations of salts. Earth Surf Process Landf 26(8):811–818CrossRefGoogle Scholar
  81. Williams PJ, Smith MW (1989) The frozen earth: fundamentals of geocryology. Cambridge University Press, Cambridge, UKGoogle Scholar
  82. Wilson RC (1983) Solute redistribution and freezing rates in a coarse-grained soil with saline porewater. MSc Thesis, Oregon State Univ., USAGoogle Scholar
  83. Woinarski AZ, Snape I, Stevens GW, Stark SC (2003) The effects of cold temperature on copper ion exchange by natural zeolite for use in a permeable reactive barrier in Antarctica. Cold Reg Sci Technol 37(2):159–168CrossRefGoogle Scholar
  84. Woo M, Marsh P, Pomeroy JW (2000) Snow, frozen soils and permafrost hydrology in Canada, 1995–1998. Hydrol Process 14:1591–1611CrossRefGoogle Scholar
  85. Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:RG4002CrossRefGoogle Scholar
  86. Zhang Y, Wang S, Barr A, Black TA (2008) Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Reg Sci Technol 52(3):355–370CrossRefGoogle Scholar
  87. Zhang Y, Carey SK, Quinton WL, Janowicz R, Pomeroy JW, Flerchinger G (2010) Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils. Hydrol Earth Syst Sci 14(5):729–750CrossRefGoogle Scholar
  88. Zhao L, Gray DM (1997) A parametric expression for estimating infiltration into frozen soils. Hydrol Process 11:1761–1775CrossRefGoogle Scholar
  89. Zhao L, Gray DM (1999) Estimating snowmelt infiltration into frozen soils. Hydrol Process 13:1827–1842CrossRefGoogle Scholar
  90. Zhao L, Gray DM, Male DH (1997) Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground. J Hydrol 200:345–363CrossRefGoogle Scholar
  91. Zreda M, Desilets D, Ferré TPA, Scott RL (2008) Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys Res Lett 35:L21402Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. M. Ireson
    • 1
  • G. van der Kamp
    • 2
  • G. Ferguson
    • 1
  • U. Nachshon
    • 1
  • H. S. Wheater
    • 1
  1. 1.Global Water Security InstituteUniversity of SaskatchewanSaskatoonCanada
  2. 2.Environment CanadaSaskatoonCanada

Personalised recommendations